Heating Coil Unit

FORMULA OF HEATING COILS
HEATING COIL APPLICATION & MATERIAL
HEATING COIL UNIT BY MATERIAL

FORMULA OF HEATING COILS

1) Heating surface(As)

At the time of heating up, calculation of heating surface(Asx) to meet temp. of oil is

$$Asx = \frac{\{(\beta \times Tx) - \alpha\} + \{[(Tf - Ti) \times r \times V \times C\}/t]}{\{Ks \times (Ts - Tx)\}}$$

Hence, at initial and final stage of heating up

$$x = Ti$$
: $Asx = Asi$

$$x = Tf : Asx = Asf$$

Heating surfxce (As) = η x (Asi + Asf), $0.4 \leq \eta \leq 0.6$ But this should satisfy the formula indicated below

$$Tm = \frac{\alpha + (As \times Ks \times Ts)}{\beta + (As \times Ks)}$$

2) Heating time (t);
$$t = \frac{rx \ Vx \ C}{\beta + (As \ x \ Ks)} \ LN \left(\frac{Tm \ x \ Ti}{Tm \ x \ Tf}\right)$$

4) HEATING COIL HENGTH (Lact); Lact = As/
$$(\pi \times D)$$

5) Max, steam consumption (Gm);
$$Gm = \frac{Ks}{H1 - h2} \times Asx (Ts - Ti)$$

6) Steam consumption for keeing (Gk);
$$Gk =$$

Leff =
$$\frac{dx \sqrt[3]{\{1-(P2/P1)^2\} \times g \times P1 \times d^2 \times (H1-h2)^2}}{2x \sqrt[3]{Ks^2} \times D^2 \times (Ts-Tf)^2 \times \lambda \times m \times v1}$$

v: specific volume

g: 127100000 (m/jr2)

 $\lambda : 0.0134$

HEATING COIL APPLICATION & MATERIAL

STAINLESS STEEL

- -CRUDE OIL TANK, PRODUCT CARRIER, CHEMICAL TANK
- -LNGC, FPSO, ATC (CARGO HOLD OR SLOP TANK)

CARBON STEEL

-H.F.O. TANK FOR ALL TYPE SHIPS.

AL-BRASS, CU-NI, STEEL + ALUMINIUM -CRUDE OIL TANK

HEATING COIL UNIT BY MATERIAL

1. STAINLESS STEEL / CARBON STEEL HEATING COIL

HEAD OFFICE & FACTORY

#1173-2 Jisa-Dong, Gangseo-Gu, Pusan, Korea 618-230. tel. 82-51-974-6301(rep) fax. 82-51-974-6305

website: www.kwangsan.com e-mail: kwangsan@kwangsan.com