#### Global Leader www.hhi.co.kr

Copyright © 2018 Hyundai Heavy Industries A00-133-10 Jan. 2018. Contents subject to change without prior notice.

## HYUNDAI HIMSEN ENGINE

PROGRAMME 2018 2nd

**Hi-OPTIMIZED POWER SOLUTIONS** 

Hi-touch Marine & Stationary ENgine Marine & Offshore GenSets









## Introduction

As one of the leading engine builders in the world, the Engine & Machinery Division of Hyundai Heavy Industries Co., Ltd. (HHI-EMD) has enjoyed its reputation since its beginning in 1978. HHI-EMD has taken up 35 % of the world's market share in 2-stroke engines covering marine and stationary purposes.

This shows that the superior quality of HYUNDAI engines has been recognized by customers all over the world. HHI-EMD developed its own specially designed HiMSEN engine as part of ongoing efforts to provide the most practical and highest quality engines to its customers.

Key advantages of the HiMSEN engine include reliability, durability, long service intervals, easy maintenance, operational economy, and environmental friendliness. Based on its leading position in engine production,

HHI-EMD has become the forerunner in the sector of engine power generation as well. A great number of its domestic and overseas engine power plants have shown superb performance, adding to the HYUNDAI reputation. The business activities of HHI-EMD have been further expanded into diverse fields of Marine Pumps, Turbines, Ballast Water Treatment System, Hi-GAS, Hi-ReGAS, Hi-ERS, Hi-EMS and NoNOX System.



ENGINE & MACHINERY DIVISION

#### Marine Propulsion System

HiMSEN propulsion system Department 1000, Bangeojinsunhwan-doro, Dong-gu, Ulsan, Korea (Zip code : 44032)

Tel. : +82-52-202-7293 e-Mail : k110@hhi.co.kr

Marine Engine & Eco-Machinery

Marine Engine & Machinery Sales Department

1000, Bangeojinsunhwan-dor Dong-gu, Ulsan, Korea (Zip code : 44032) Tel. : +82-52-202-7281/7291 e-Mail : enginesales@hhi.co.kr

Power Plant

Engine Power Plant Department 1000, Bangeojinsunhwan-doro, Dong-gu, Ulsan, Korea (Zip code : 44032)

, Tel : +82-52-202-7302 / 7041 e-Mail : k120hhi@hhi.co.kr

Oustomer Service

Hyundai Global Service Co. Ltd

Centum Science Park 6F 79, Centum jungang-ro, Haeundae-gu, Busan, Korea (Zip code : 48058) Tel: +82-52-204-7760/7887 (for Warranty Service) Tel: +82-52-204-7718/7742 (for Parts Sales) e-Mail: service@hyundai-gs.com / sales@hyundai-gs.com

38

108

## Marine Engine & Machinery

HYUNDAL

HIMSEN

Hyundai Heavy Industries Co., Ltd.



#### **Design Philosophy**

Hyundai's HiMSEN Family have simple and smart design suitable for marine applications with high reliability and performance. The key features are:

**Heavy Fuel Engine** with same fuel of main engine (Uni-Fuel concept). Hence, the diesel fuel and heavy fuel oil of the viscosity of upto 700cSt at 50 °C is acceptable.

Economical and Ecological Engine with low fuel consumption, NOx emission, and Smoke, etc. , which is based on the below specific designs;

- Optimized Supercharging with Miller Cycle
- High Fuel Injection Pressure

## **Reliable and Practical Engine** with simple, smart and robust structure

smart and robust structure.

- Number of engine components are minimized with Pipe-Free design
- Most of the components are directly accessible for easier maintenance
- 'Individual Part' maintenance concept is provided
- Feed System is fully modularized with direct accessibility



# Engine & Machinery Division

## Emergency GenSets for Nuclear Power Plant







Container ship

# **Earth-Friendly Engine**

#### Main Features

#### Performance characteristics

- High output in the similar range engines
- Low fuel oil consumption
- Quick acceleration & load response

#### Maintenance

- Easier maintenance by modularized design
- Minimal number and kind of components

#### Earth-friendly engine

- Low NOx emissions
- Compliance with IMO NOx Tier II, Tier III
- Low vibration & noise



Jack-up Platform/Drilling Rig







Drillship

#### Major Application

- Marine
- Propulsion system
- Generating sets

#### Offshore

- Drill ship
- FPSO

#### Stationary

- Power plants
- Packaged power stations
- Gas engine power plants
- Pre-fabricated power plants

Car Ferry & Passenger Vessel

- Barge-mounted diesel power plants
- Emergency diesel generator (EDG) for nuclear power plants









## **HiMSEN ENGINE**

#### Introduction

#### General

This programme provides necessary information and recommendations for the application of HYUNDAI's HiMSEN engines.

'HIMSEN'® is the registered brand name of HYUNDA's own design engine and the abbreviation of 'Hi-touch Marine & Stationary ENgine'.

Please note that all data and information prepared in this programme are for guidance only and subject to change without notice. Therefore, please contact Hyundai Heavy Industries Co., Ltd.

before actual applications of the data. Hyundai Heavy Industries Co., Ltd. will always provide the data for the installation of specific project.

#### Engine Model Designation

|                                       |            | 18 | Н | 32 | / | 40 |   | V | Ρ |
|---------------------------------------|------------|----|---|----|---|----|---|---|---|
|                                       |            | ٨  | ٨ | Å  |   | ٨  | ķ | ķ | ķ |
| No. of Cylinders                      |            |    |   |    |   |    |   |   |   |
| HYUNDAI's HiMSEN                      |            |    | ! |    |   |    |   |   |   |
| Cylinder Bore in cm                   | <u>.</u>   |    |   |    |   |    |   |   |   |
| Piston Stroke in cm                   |            |    |   |    |   |    |   |   |   |
| (empty): Oil<br>G: Gas, DF: Dual Fuel | , C: CLEAN |    |   |    |   |    |   |   |   |
| (empty): In-line type<br>V: Vee type  |            |    |   |    |   |    |   |   |   |
| P:Propulsion                          |            |    |   |    |   |    |   |   |   |

#### **Engine Operation**

#### **Reference Condition**

General definition of diesel engine rating is specified in accordance with ISO 3046/1:2002, ISO 15550:2002.

However the engine outputs are available within tropical conditions without derating.

#### **Tropical Conditions**

- Turbocharger air inlet pressure: 1,000 mbar
- Turbocharger air inlet temperature: 318 K (45 °C)
- Charge air coolant temperature: 309 K (36 °C)\*
- \* Valid for central cooling system up to 36 °C normally, 38 °C specially.

#### Specific Fuel Oil Consumption (SFOC) & Heat Rate

The stated consumption figures refer to the following ISO reference conditions:

- Turbocharger air inlet pressure: 1,000 mbar
- Turbocharger air inlet temperature: 298 K (25 °C)
- Charge air coolant temperature: 298 K (25 °C)
- Lower calorific value of fuel 42,700 kJ/kg
- Without engine driven pumps
- Tolerance +5 %
- At 100 % load

#### Specific Lube Oil Consumption (SLOC)

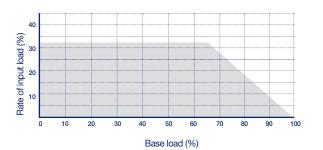
The stated consumption is given with a tolerance of +25 % depending on the operating conditions.

## **HIMSEN ENGINE**

#### **Engine Operation**

#### Engine Power

The engine brake power is stated in kW. For conversion between kW and metric horsepower, please note that 1 bhp = 75 kg·m/s = 0.7355 kW. Ratings are given according to ISO 3046/1:2002, ISO 15550:2002.


In case of HR (Higher Rating) version, no overload is permissible except for 10 % overload during official factory test.

#### Power Management of Gensets

When making power management system of multi-Gensets for marine application, a proper load balance is to be considered by shipyard.

In case of a failure of one engine, its output has to be made up for by the remaining engines or by reducing/switching off electric consumers.

No overload of remaining engine is allowed for such a case and the electric power scheme of the ship can be derived from the following load characteristics.



#### Continuous Load-Up

The quickest way to load-up from 0 % to 100 % load can be achieved by increasing the load continuously and gradually.

#### Step by Step Load-Up

Considering the time required for stabilizing the frequency deviation due to sudden load-up, it is recommended to load up from idle to full load by more than three steps IACS (especially for GenSets of 720rpm or 900rpm due to higher BMEP of over 24 bar).

HiMSEN GenSets except gas engine fulfill the requirements of classification societies concerning the frequency deviation and recovery time when loading up by 3 steps from 0 % to 100 %.

HiMSEN GenSets gas engine fulfill the requirements, considering the time and safety required for stabilizing the frequency due to sudden load up, it is recommended to load up from idle to full load by more six steps.

## **HiMSEN ENGINE**

#### **Engine Operation**

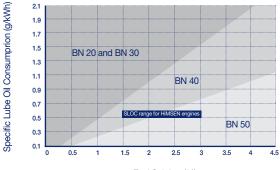
## Information for Fuel oil control by EU Directive 2005-33-EC and California Code of Regulations

All HiMSEN engines are suitable and developed for continuous operation on HFO as well as MDO/MGO. There is no lower limit for the sulfur content of fuel oil. In connection to the low viscosity of MGO, (Marine Gas Oil, DMA as defined in ISO 8217) the viscosity at engine inlet should be kept within the value of 2 ~ 14 cSt in order to avoid possible wear or sticking of fuel injection pump due to low lubricity and in order to maintain the suitable hydrodynamic film between fuel injection pump plunger and barrel.

- Recommended stable viscosity at engine inlet: Min. 3 cSt

- Recommended minimum viscosity at engine inlet: Min. 2 cSt

So, a proper cooling device (D.O cooler or chiller etc.) is to be considered, if needed, to keep the above mentioned viscosity ( $2 \sim 14$  cSt) at engine inlet.


When the MGO is to be used only for temporary engine operation (e.g. in port), higher BN lube oil used for residual fuel (HFO) should not present any problems in case of short periods of running.

When engine is not operated continuously with low sulfur fuel such as MGO, lube oil should be chosen according to the highest sulfur contents of the fuel with normal operation.

#### Guideline for Lube Oil

Base Number (BN) must be carefully selected depending on fuel grade and sulfur contents. Following are guidance values for initial filling.

## Typical recommended BN depending on the fuel sulfur contents and SLOC (g/kWh) $% \left( \frac{1}{2} \right) = 0$



Fuel Sulphur (%)

Reference: CIMAC recommendation number 29/2008 'Guidelines for the lubrication of medium speed diesel engine'

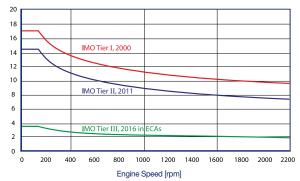


## **HIMSEN ENGINE**

#### **Engine Operation**

#### IMO NOX EMISSION AND HIMSEN ENGINES

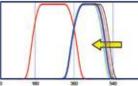
Annex VI of the MARPOL 73/78 convention entered into force 12 May 2005, All HiMSEN engines included in this booklet comply with the NOx Limits specified in the IMO regulation.


The exhaust emission regulations in Annex VI were referred to as IMO Tier I, MARPOL Annex VI regulations were amended at the MEPC (Marine Environment Protection Committee) in October 2008. These specify further NOx emission limits to be known as IMO Tier II and Tier III

IMO Tier II regulations were entered into force on 1 January 2011 based on keel laying, according to a speed dependent function, with reduction of about 20 % in comparison with IMO Tier I (refer to chart).

Under IMO Tier III, the NOx emission limits for marine engines become effective on 1 January 2016 based on keel laving, according to a speed dependent function. with reduction of 80 % in comparison with IMO Tier I when the ship is operated in a designated Emission Control Areas (so called ECAs).

All types of HiMSEN engine are complied with the new upcoming NOx emission regulations, and do its best to satisfy further request if any from customers.


#### NOx Emission [g/kWh]

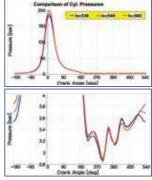


#### HYUNDAI ENVIRONMENTAL TECHNOLOGIES against IMO Tier II, Tier III

HYUNDAI is introducing technologies to meet IMO Tier II, Tier III regulation with internal engine measures only such as:

- Miller valve timing requiring increased charger air pressure by applying the high pressure ratio turbocharger
- Optimised combustion by applying the combustion control technologies with optimising the piston bowl shape and the fuel injection valve nozzle etc.




**Cycle Simulation** 

#### Miller valve timing

This technology is very useful to reduce the NOx emission by optimising the intake valve's closing timing especially, result in changing the effective compression and expansion ratio

In order to apply this technology, Various Intake Valve Closing Timing for 1-D the high pressure ratio turbocharger is required to increase the charge air pressure and new devel oped T/C with high pre ssure ratio is mounted

on HiMSEN engine.



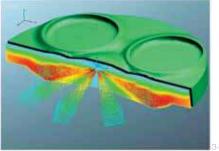
13

Engine & Machinery Divisior

Combustion pressure depending on IVC timing from 1-D Cycle Simulation

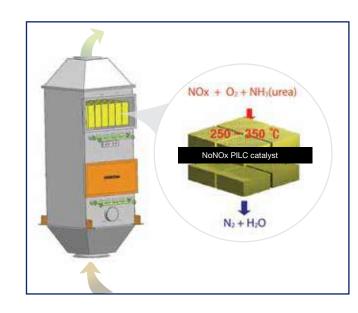





## **HiMSEN ENGINE**

#### **Engine Operation**

#### Optimized combustion


The NOx emission can be reduced by the combustion control technologies with the optimum combination of the piston bowl shape and the fuel injection valve nozzle etc.

The piston bowl shape and the fule injection valve nozzle's specification are optimized to meet the IMO Tier II, Tier III regulation, which are evaluated by 3-D combustion analysis and verified by the measurement at HiMSEN Techno Center.



3-D Combustion Analysis

HYUNDAI ENVIRONMENTAL TECHNOLOGIES against IMO Tier III As one of solutions, NoNOx<sup>™</sup> SCR (Selective Catalytic Reduction) system HYUNDAI can offer NoNOx<sup>™</sup> SCR technology that can reduce NOx emissions by 95 %, designed for Tier III limits. HYUNDAI is optimizing the whole installation, performance and engine in order to achieve low cost of production and give benefits to the customers.





#### HIMSEN...

The best solution for all types of marine vessels and offshore applications with proven reliability, low emission, low operation cost, multi-fuel capability...Our extensive R&D facilities enable HH to provide the customers with high quality and excellent services in all phases of designing, production, as sembly and commis s ioning of HIMSEN propulsion packaged system.

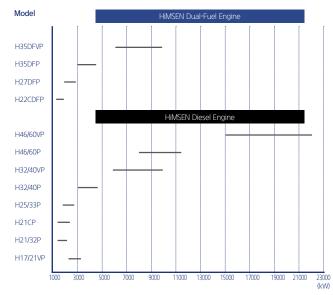
## Marine Propulsion System

#### Long Term Commitment...

To provide the market with reliable, cost effective and earth-friendly solution

#### Optimized Matching of HiMSEN Propulsion Package

- HIMSEN Diesel or Dual fuel engines
- C.P/F.P Propeller with shafting, Azimuth thruster
- Pitch and speed control
- Load control
- Reduction gear
- Shaft generator
- Auxiliary machinery


#### Application

- Controllable pitch propulsion
- Fixed pitch propulsion
- Azimuth thruster propulsion
- Pump drive

#### Excellent Performance of HiMSEN Propulsion Engine

- Improved transient operation with pulse charging turbocharger
- Invisible smoke
- Lower thermal load engine
- Low fuel consumption
- Low NOx emission

## Power range for HiMSEN Propulsion engines



#### Power Range

| H22CDFP | 1,100~1,980kW  |
|---------|----------------|
| H27DFP  | 1,860~2,790kW  |
| H35DFP  | 3,000~4,500kW  |
| H35DFVP | 6,000~10,000kW |
|         |                |

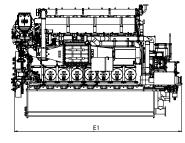
H17/21VP 1 920~3 200kW H21/32P 1,200~1,800kW H21CP 1 200~2 160kW H25/33P 1,740~2,610kW H32/40P 3,000~4,500kW H32/40VP 6 000~10 000kW H46/60P 7,500~11,250kW 15,000~22,500kW H46/60VP

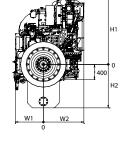
Engine & Machinery Divisior

# HiMSEN Dual Fuel Engines for Propulsion

|                                | Model           |           | H22CDFP | H27DFP | H35DFP | H35DFVP |  |  |
|--------------------------------|-----------------|-----------|---------|--------|--------|---------|--|--|
| E                              | lore            | mm        | 220     | 270    | 350    | 350     |  |  |
| St                             | roke            | mm        | 330     | 330    | 400    | 400     |  |  |
| Sp                             | peed            | r/min.    | 1,000   | 1,000  | 750    | 750     |  |  |
| Cylinde                        | Cylinder output |           | 220     | 310    | 500    | 500     |  |  |
|                                |                 | cyl.      | kW      |        |        |         |  |  |
|                                |                 | 5         | 1,100   |        |        |         |  |  |
|                                |                 | 6         | 1,320   | 1,860  | 3,000  |         |  |  |
|                                |                 | 7         | 1,540   | 2,170  | 3,500  |         |  |  |
|                                |                 | 8         | 1,760   | 2,480  | 4,000  |         |  |  |
| Rated                          | output #)       | 9         | 1,980   | 2,790  | 4,500  |         |  |  |
|                                |                 | 12        |         |        |        | 6,000   |  |  |
|                                |                 | 14        |         |        |        | 7,000   |  |  |
|                                |                 | 16        |         |        |        | 8,000   |  |  |
|                                |                 | 18        |         |        |        | 9,000   |  |  |
|                                |                 | 20        |         |        |        | 10,000  |  |  |
| SFOC *)<br>on Diesel           | at 100% MCR     | a ll A Mb | 192.0   | 186.0  | 185.0  | 185.0   |  |  |
| mode                           | at 85% MCR      | g/kWh     | 196.0   | 185.0  | 184.0  | 184.0   |  |  |
| Heat rate *)<br>on Gas<br>mode | at 100% MCR     | kJ/kWh    | 8,079   | 7,728  | 7,270  | 7,270   |  |  |

#### \*) Note :


- 1) Reference condition based on ISO 3046/1
- 2) Fuel oil based on LCV(Lower Calorific Value) 42,700kJ/kg
- 3) Gas operation : Including pilot fuel oil and fuel gas based on LHV(Lower Heating Value)  $35 \text{MJ}/\text{Nm}^3, \, \text{MN80}$
- 4) Tolerance +5% and without engine driven pumps
- 5) NOx Emission limitation : IMO Tier II on Diesel mode, IMO Tier III on Gas mode
- #) Based on the CPP Constant speed operation (For FPP : Please contact HHI EMD)


## **Marine Propulsion System**

Tier II, Tier III

#### H22CDFP I Bore: 220 mm, Stroke: 330 mm

Controllable Pitch Propeller Permit high skew angles to minimize noise and vibration.

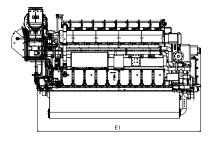


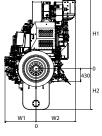


#### Dimensions

| 1000<br>rpm | 1    | Rated Output      | Engine dimension (mm) & dry weight (ton) |       |       |     |       |               |  |  |
|-------------|------|-------------------|------------------------------------------|-------|-------|-----|-------|---------------|--|--|
|             | cyl. | at Engine<br>(kW) | E1                                       | H1    | H2    | W1  | W2    | Dry<br>Weight |  |  |
|             | 5    | 1,100             | 3,680                                    | 1,825 | 1,145 | 737 | 1,015 | 16.0          |  |  |
|             | 6    | 1,320             | 4,030                                    | 1,825 | 1,145 | 737 | 1,060 | 18.0          |  |  |
|             | 7    | 1,540             | 4,380                                    | 1,825 | 1,145 | 737 | 1,060 | 20.0          |  |  |
|             | 8    | 1,760             | 4,730                                    | 1,825 | 1,145 | 737 | 1,150 | 22.0          |  |  |
|             | 9    | 1,980             | 5,080                                    | 1,825 | 1,145 | 737 | 1,150 | 24.0          |  |  |

E1 : Dimension between eng. flywheel to eng. free end. In case of dry sump, the weight and height will be reduced.




Tier II, Tier III

#### H27DFP I Bore: 270 mm, Stroke: 330 mm

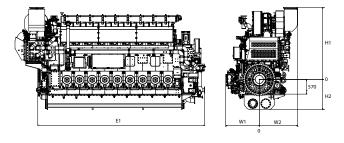
Controllable Pitch Propeller Permit high skew angles to minimize noise and vibration.





#### Dimensions

|  | 1000<br>rpm |      | Rated Output      | Engine dimension (mm) & dry weight (ton) |       |       |       |       |               |  |  |  |
|--|-------------|------|-------------------|------------------------------------------|-------|-------|-------|-------|---------------|--|--|--|
|  |             | cyl. | at Engine<br>(kW) | E1                                       | H1    | H2    | W1    | W2    | Dry<br>Weight |  |  |  |
|  |             | 6    | 1,860             | 4,060                                    | 2,199 | 1,360 | 1,030 | 1,214 | 24.2          |  |  |  |
|  |             | 7    | 2,170             | 4,440                                    | 2,199 | 1,360 | 1,030 | 1,214 | 26.5          |  |  |  |
|  |             | 8    | 2,480             | 4,820                                    | 2,199 | 1,360 | 1,030 | 1,214 | 28.1          |  |  |  |
|  |             | 9    | 2,790             | 5,200                                    | 2,329 | 1,360 | 1,030 | 1,214 | 30.2          |  |  |  |


E1 : Dimension between eng, flywheel to eng, free end. In case of dry sump, the weight and height will be reduced,

## **Marine Propulsion System**

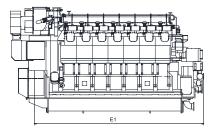
Tier II, Tier III

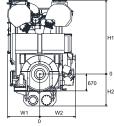
#### H35DFP I Bore: 350 mm, Stroke: 400 mm

Controllable Pitch Propeller Permit high skew angles to minimize noise and vibration.



#### Dimensions


| 750 |      | Rated Output<br>at Engine<br>(kW) | Engine dimension (mm) & dry weight (ton) |       |       |       |       |               |  |  |
|-----|------|-----------------------------------|------------------------------------------|-------|-------|-------|-------|---------------|--|--|
| rpm | cyl. |                                   | E1                                       | H1    | H2    | W1    | W2    | Dry<br>Weight |  |  |
|     | 6    | 3,000                             | 5,007                                    | 2,381 | 1,170 | 1,304 | 1,373 | 36.7          |  |  |
|     | 7    | 3,500                             | 5,497                                    | 2,473 | 1,170 | 1,304 | 1,430 | 41.6          |  |  |
|     | 8    | 4,000                             | 6,009                                    | 2,799 | 1,170 | 1,304 | 1,490 | 44.5          |  |  |
|     | 9    | 4,500                             | 6,477                                    | 2,799 | 1,170 | 1,304 | 1,490 | 47.6          |  |  |


E1 : Dimension between eng. flywheel to eng. free end.

Tier II, Tier III

#### H35DFVP I Bore: 350 mm, Stroke: 400 mm

Controllable Pitch Propeller Permit high skew angles to minimize noise and vibration.





#### Dimensions

| 750 |      | Rated Output      | Eng   | Engine dimension (mm) & dry weight (ton) |       |       |       |               |  |  |  |  |
|-----|------|-------------------|-------|------------------------------------------|-------|-------|-------|---------------|--|--|--|--|
| rpm | cyl. | at Engine<br>(kW) | E1    | H1                                       | H2    | W1    | W2    | Dry<br>Weight |  |  |  |  |
|     | 12   | 6,000             | 6,092 | 2,933                                    | 1,192 | 1,277 | 1,412 | 60.0          |  |  |  |  |
|     | 14   | 7,000             | 6,717 | 2,933                                    | 1,192 | 1,277 | 1,412 | 67.3          |  |  |  |  |
|     | 16   | 8,000             | 7,342 | 2,933                                    | 1,192 | 1,277 | 1,412 | 73.1          |  |  |  |  |
|     | 18   | 9,000             | 7,967 | 2,933                                    | 1,192 | 1,277 | 1,412 | 80.3          |  |  |  |  |
|     | 20   | 10,000            | 8,592 | 2,933                                    | 1,192 | 1,277 | 1,412 | 88.0          |  |  |  |  |

E1 : Dimension between eng. flywheel to eng. free end.

## HiMSEN Diesel Engines for Propulsion

| Model               |         | H21/32P | H21CP | H25/33P          | H32/40P | H46/60P |
|---------------------|---------|---------|-------|------------------|---------|---------|
| Bore                | mm      | 210     | 210   | 250              | 320     | 460     |
| Stroke              | mm      | 320     | 330   | 330              | 400     | 600     |
| Speed               | r/min.  | 900     | 900   | 900              | 750     | 600     |
| Cylinder output     | kW/cyl. | 200     | 240   | 290              | 500     | 1,250   |
|                     | cyl.    |         |       |                  |         |         |
|                     | 5       |         | 1,200 |                  |         |         |
| Rated output #)     | 6       | 1,200   | 1,440 | 1,740 /<br>1,800 | 3,000   | 7,500   |
|                     | 7       | 1,400   | 1,680 | 2,030            | 3,500   | 8,750   |
|                     | 8       | 1,600   | 1,920 | 2,320            | 4,000   | 10,000  |
|                     | 9       | 1,800   | 2,160 | 2,610            | 4,500   | 11,250  |
| SFOC *) at 100% MCR | allaMb  | 183.0   | 183.0 | 181.0            | 184.0   | 177.0   |
| at 85% MCR          | g/kWh   | 183.0   | 179.0 | 181.0            | 181.0   | 174.0   |

|         | Model       |          | H17/21VP | H32/40VP     | H46/60VP |  |  |  |
|---------|-------------|----------|----------|--------------|----------|--|--|--|
| Bo      | ore         | mm       | 170      | 320          | 460      |  |  |  |
| Str     | Stroke      |          | 210      | 400          | 600      |  |  |  |
| Sp      | Speed       |          | 1,800    | 750          | 600      |  |  |  |
| Cylinde | r output    | kW/cyl.  | 160      | 500          | 1,250    |  |  |  |
|         |             |          | kW       |              |          |  |  |  |
|         |             | 12       | 1,920    | 6,000        | 15,000   |  |  |  |
| Datad a | utput #)    | 14       |          | 7,000        |          |  |  |  |
| Rated o | ulpul #)    | 16       | 2,560    | 8,000        | 20,000   |  |  |  |
|         |             | 18       | 2,880    | 9,000        | 22,500   |  |  |  |
|         |             | 20       | 3,200    | 3,200 10,000 |          |  |  |  |
|         | at 100% MCR | ~//.//// | 199.0    | 186.0        | 177.0    |  |  |  |
| SFOC *) | at 85% MCR  | g/kWh    | 196.0    | 181.0        | 174.0    |  |  |  |

\*) Note :

1) Reference condition based on ISO 3046/1

2) Fuel oil based on LCV(Lower Calorific Value) 42,700kJ/kg

3) Tolerance +5% and without engine driven pumps

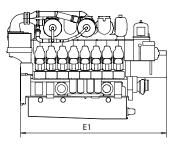
4) NOx Emission limitation : IMO Tier II

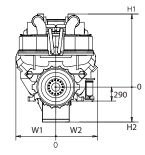
5) H17/21VP Model:Only applicable on MGO operation

#) Based on the CPP Constant speed operation (For FPP : Please contact HHI EMD)



Tier II, Tier III (with SCR)


#### H17/21VP I Bore: 170 mm, Stroke: 210 mm


Controllable Pitch Propeller

Permit high skew angles to minimize noise and vibration.

#### **Fixed Pitch Propeller**

Guarantee optimum thrust, minimal noise and vibration level.





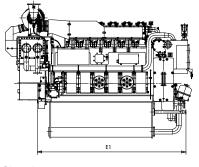
#### Dimensions

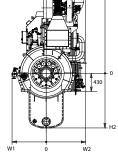
| 1800 | cyl Output |           | Engine dimension (mm) & dry weight (ton) |       |     |     |     |               |  |  |
|------|------------|-----------|------------------------------------------|-------|-----|-----|-----|---------------|--|--|
| rpm  |            | at Engine | E1                                       | H1    | H2  | W1  | W2  | Dry<br>Weight |  |  |
|      | 12         | 1,920     | 2,559                                    | 1,373 | 726 | 830 | 865 | 8.7           |  |  |
|      | 16         | 2,560     | 3,029                                    | 1,373 | 726 | 830 | 865 | 10.5          |  |  |
|      | 18         | 2,880     | 3,264                                    | 1,373 | 726 | 830 | 865 | 11.4          |  |  |
|      | 20         | 3,200     | 3,499                                    | 1,373 | 726 | 830 | 865 | 12.2          |  |  |

E1 : Dimension between eng. flywheel to eng. free end.

## **Marine Propulsion System**

#### Tier II, Tier III (with SCR)


#### H21/32P I Bore: 210 mm, Stroke: 320 mm


Controllable Pitch Propeller

Permit high skew angles to minimize noise and vibration.

#### **Fixed Pitch Propeller**

Guarantee optimum thrust, minimal noise and vibration level.





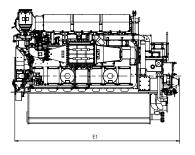
#### Dimensions

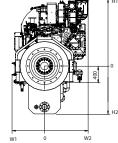
| 900<br>rpm |      | Rated<br>Output at | Engine dimension (mm) & dry weight (ton) |       |       |     |       |               |  |  |
|------------|------|--------------------|------------------------------------------|-------|-------|-----|-------|---------------|--|--|
|            | cyl. | Engine<br>(kW)     | E1                                       | H1    | H2    | W1  | W2    | Dry<br>Weight |  |  |
|            | 6    | 1,200              | 3,535                                    | 1,885 | 1,300 | 812 | 939   | 18.0          |  |  |
|            | 7    | 1,400              | 3,865                                    | 1,885 | 1,300 | 812 | 939   | 20.0          |  |  |
|            | 8    | 1,600              | 4,195                                    | 2,059 | 1,355 | 812 | 1,005 | 21.0          |  |  |
|            | 9    | 1,800              | 4,525                                    | 2,059 | 1,355 | 812 | 1,005 | 23.0          |  |  |

E1 : Dimension between eng. flywheel to eng. free end. In case of dry sump, the weight and height will be reduced.



<u>ω</u>


Tier II, Tier III (with SCR)


#### H21CP I Bore: 210 mm, Stroke: 330 mm

Controllable Pitch Propeller Permit high skew angles to minimize noise and vibration.

#### **Fixed Pitch Propeller**

Guarantee optimum thrust, minimal noise and vibration level.





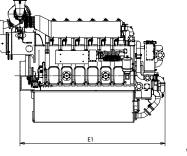
#### Dimensions

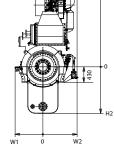
| 900 |      | Rated<br>Output at | Engine dimension (mm) & dry weight (ton) |       |       |     |       |               |  |  |
|-----|------|--------------------|------------------------------------------|-------|-------|-----|-------|---------------|--|--|
| rpm | cyl. | Engine<br>(kW)     | E1                                       | H1    | H2    | W1  | W2    | Dry<br>Weight |  |  |
|     | 5    | 1,200              | 3,688                                    | 1,620 | 1,175 | 798 | 1,065 | 15.0          |  |  |
|     | 6    | 1,440              | 4,038                                    | 1,620 | 1,175 | 798 | 1,065 | 17.0          |  |  |
|     | 7    | 1,680              | 4,388                                    | 1,620 | 1,175 | 798 | 1,065 | 19.0          |  |  |
|     | 8    | 1,920              | 4,738                                    | 1,620 | 1,175 | 798 | 1,065 | 20.0          |  |  |
|     | 9    | 2,160              | 5,088                                    | 1,620 | 1,175 | 798 | 1,065 | 22.0          |  |  |

E1 : Dimension between eng. flywheel to eng. free end. In case of dry sump, the weight and height will be reduced.

## **Marine Propulsion System**

#### Tier II, Tier III (with SCR)


#### H25/33P I Bore: 250 mm, Stroke: 330 mm


Controllable Pitch Propeller

Permit high skew angles to minimize noise and vibration.

#### **Fixed Pitch Propeller**

Guarantee optimum thrust, minimal noise and vibration level.



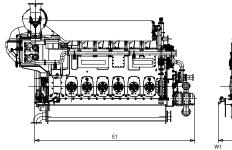


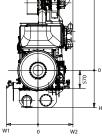
#### Dimensions

| 900<br>rpm |      | Rated<br>Output at | Engine dimension (mm) & dry weight (ton) |       |       |     |       |              |  |  |
|------------|------|--------------------|------------------------------------------|-------|-------|-----|-------|--------------|--|--|
|            | cyl. | Engine<br>(kW)     | E1                                       | H1    | H2    | W1  | W2    | Dry<br>Weigh |  |  |
|            | 6    | 1,740              | 4,238                                    | 2,209 | 1,360 | 812 | 998   | 23.0         |  |  |
|            | 7    | 2,030              | 4,618                                    | 2,209 | 1,360 | 812 | 998   | 25.0         |  |  |
|            | 8    | 2,320              | 4,998                                    | 2,331 | 1,360 | 812 | 1,068 | 26.9         |  |  |
|            | 9    | 2,610              | 5,378                                    | 2,331 | 1,360 | 812 | 1,068 | 29.3         |  |  |

E1 : Dimension between eng. flywheel to eng. free end. In case of dry sump, the weight and height will be reduced. l w

Tier II. Tier III (with SCR)


#### H32/40P I Bore: 320 mm, Stroke: 400 mm


**Controllable Pitch Propeller** 

Permit high skew angles to minimize noise and vibration.

#### **Fixed Pitch Propeller**

Guarantee optimum thrust, minimal noise and vibration level.



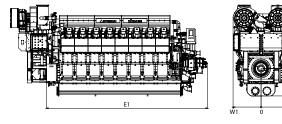


#### Dimensions

| 750<br>rpm | n .    | Rated<br>Output at | Engine dimension (mm) & dry weight (ton) |       |       |     |       |               |  |  |
|------------|--------|--------------------|------------------------------------------|-------|-------|-----|-------|---------------|--|--|
| ipi        | " cyl. | Engine<br>(kW)     | E1                                       | H1    | H2    | W1  | W2    | Dry<br>Weight |  |  |
|            | 6      | 3,000              | 5,021                                    | 2,602 | 1,170 | 986 | 1,100 | 35.7          |  |  |
|            | 7      | 3,500              | 5,511                                    | 2,602 | 1,170 | 986 | 1,100 | 39.6          |  |  |
|            | 8      | 4,000              | 6,079                                    | 2,734 | 1,170 | 986 | 1,100 | 43.5          |  |  |
|            | 9      | 4,500              | 6,569                                    | 2,734 | 1,170 | 986 | 1,100 | 46.6          |  |  |

E1 : Dimension between eng. flywheel to eng. free end.

## **Marine Propulsion System**


#### Tier II, Tier III (with SCR)

#### H32/40VP | Bore: 320 mm, Stroke: 400 mm

**Controllable Pitch Propeller** Permit high skew angles to minimize noise and vibration.

#### **Fixed Pitch Propeller**

Guarantee optimum thrust, minimal noise and vibration level.



#### Dimensions

| 750<br>rpm |      | Rated<br>Output at | Engine dimension (mm) & dry weight (ton) |       |       |       |       |              |  |  |
|------------|------|--------------------|------------------------------------------|-------|-------|-------|-------|--------------|--|--|
|            | cyl. | Engine<br>(kW)     | E1                                       | H1    | H2    | W1    | W2    | Dry<br>Weigh |  |  |
|            | 12   | 6,000              | 6,208                                    | 2,749 | 1,270 | 1,294 | 1,462 | 58.0         |  |  |
|            | 14   | 7,000              | 6,833                                    | 2,933 | 1,270 | 1,294 | 1,462 | 65.3         |  |  |
|            | 16   | 8,000              | 7,458                                    | 2,933 | 1,270 | 1,294 | 1,462 | 71.1         |  |  |
|            | 18   | 9,000              | 8,083                                    | 2,933 | 1,270 | 1,294 | 1,462 | 78.3         |  |  |
|            | 20   | 10,000             | 8,708                                    | 2,933 | 1,270 | 1,294 | 1,462 | 86.0         |  |  |

E1 : Dimension between eng. flywheel to eng. free end.

l Ш

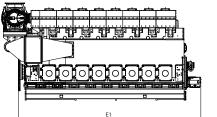


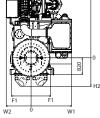
Ŵ2

# Engine & Machinery Division

## **Marine Propulsion System**

Tier II, Tier III (with SCR)


#### H46/60P I Bore: 460 mm, Stroke: 600 mm


Controllable Pitch Propeller

Permit high skew angles to minimize noise and vibration.

#### **Fixed Pitch Propeller**

Guarantee optimum thrust, minimal noise and vibration level.



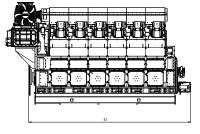


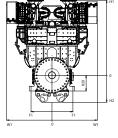
#### Dimensions

| 600 |      | Rated<br>Output at | Engine dimension (mm) & dry weight (ton) |       |       |     |       |       |               |  |
|-----|------|--------------------|------------------------------------------|-------|-------|-----|-------|-------|---------------|--|
| rpm | cyl. | Engine<br>(kW)     | E1                                       | H1    | H2    | F1  | W1    | W2    | Dry<br>Weight |  |
|     | 6    | 7,500              | 7,376                                    | 3,300 | 1,408 | 965 | 1,999 | 1,228 | 111           |  |
|     | 7    | 8,750              | 8,196                                    | 3,400 | 1,408 | 965 | 1,999 | 1,228 | 126           |  |
|     | 8    | 10,000             | 9,016                                    | 3,400 | 1,408 | 965 | 1,999 | 1,228 | 140           |  |
|     | 9    | 11,250             | 9,836                                    | 3,400 | 1,408 | 965 | 1,999 | 1,228 | 154           |  |

E1 : Dimension between eng. flywheel to eng. free end.

## **Marine Propulsion System**


#### Tier II, Tier III (with SCR)

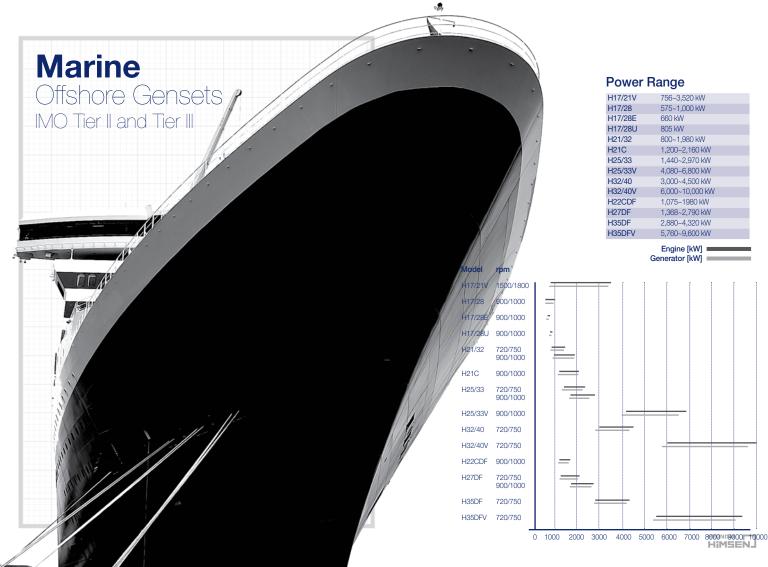

#### H46/60VP I Bore: 460 mm, Stroke: 600 mm

Controllable Pitch Propeller Permit high skew angles to minimize noise and vibration.

#### **Fixed Pitch Propeller**

Guarantee optimum thrust, minimal noise and vibration level.






#### Dimensions

| 600<br>rpm 0 |      | Rated<br>Output at | Engine dimension (mm) & dry weight (ton) |       |       |       |       |               |  |  |
|--------------|------|--------------------|------------------------------------------|-------|-------|-------|-------|---------------|--|--|
|              | cyl. | Engine<br>(kW)     | E1                                       | H1    | H2    | F1    | W1    | Dry<br>Weight |  |  |
|              | 12   | 15,000             | 8,436                                    | 3,906 | 1,408 | 1,100 | 2,359 | 196           |  |  |
|              | 16   | 20,000             | 10,436                                   | 4,006 | 1,408 | 1,100 | 2,668 | 244           |  |  |
|              | 18   | 22,500             | 11,436                                   | 4,006 | 1,408 | 1,100 | 2,668 | 268           |  |  |

E1 : Dimension between eng. flywheel to eng. free end.



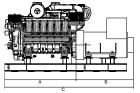


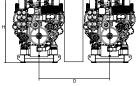
lω

#### H17/21V I Bore: 170 mm, Stroke: 210 mm

#### Main Data

| Speed       | 1500   | rpm            | 1800   | ) rpm  |  |  |  |  |
|-------------|--------|----------------|--------|--------|--|--|--|--|
| Frequency   | 50     | Hz             | 60     | Hz     |  |  |  |  |
|             | Eng.kW | Gen.kW         | Eng.kW | Gen.kW |  |  |  |  |
|             | Co     | ntinuous power |        |        |  |  |  |  |
| 6H17/21V    | 756    | 722            | 864    | 825    |  |  |  |  |
| 8H17/21V    | 1,008  | 963            | 1,152  | 1,100  |  |  |  |  |
| 10H17/21V   | 1,260  | 1,203          | 1,440  | 1,375  |  |  |  |  |
| 12H17/21V   | 1,512  | 1,444          | 1,728  | 1,650  |  |  |  |  |
| 16H17/21V   | 2,016  | 1,925          | 2,304  | 2,200  |  |  |  |  |
| 18H17/21V   | 2,268  | 2,166          | 2,592  | 2,475  |  |  |  |  |
| 20H17/21V   | 2,520  | 2,407          | 2,880  | 2,750  |  |  |  |  |
| Prime power |        |                |        |        |  |  |  |  |
| 6H17/21V    | 840    | 802            | 960    | 917    |  |  |  |  |
| 8H17/21V    | 1,120  | 1,070          | 1,280  | 1,222  |  |  |  |  |
| 10H17/21V   | 1,400  | 1,337          | 1,600  | 1,528  |  |  |  |  |
| 12H17/21V   | 1,680  | 1,604          | 1,920  | 1,834  |  |  |  |  |
| 16H17/21V   | 2,240  | 2,139          | 2,560  | 2,445  |  |  |  |  |
| 18H17/21V   | 2,520  | 2,407          | 2,880  | 2,750  |  |  |  |  |
| 20H17/21V   | 2,800  | 2,674          | 3,200  | 3,056  |  |  |  |  |
|             | S      | tandby power   |        |        |  |  |  |  |
| 6H17/21V    | 924    | 882            | 1,050  | 1,003  |  |  |  |  |
| 8H17/21V    | 1,232  | 1,177          | 1,408  | 1,345  |  |  |  |  |
| 10H17/21V   | 1,540  | 1,471          | 1,760  | 1,681  |  |  |  |  |
| 12H17/21V   | 1,848  | 1,765          | 2,112  | 2,017  |  |  |  |  |
| 16H17/21V   | 2,464  | 2,353          | 2,816  | 2,689  |  |  |  |  |
| 18H17/21V   | 2,772  | 2,647          | 3,168  | 3,025  |  |  |  |  |
| 20H17/21V   | 3,080  | 2,941          | 3,520  | 3,362  |  |  |  |  |


Based on alternator efficiency of 96 %.


Specific Lubricating Oil Consumption

Lub. Oil: 0.6 g/kWh

# Tier II, Tier III (with SCR) Dimension (mm) Dry Mass (ton)

| Speed |    | А     | <b>B</b> 1) | C 1)  | Н     | Engine 2) | GenSet 1),3 |
|-------|----|-------|-------------|-------|-------|-----------|-------------|
|       | 6  | 1,495 | 1,986       | 3,481 | 2,100 | 4.0       | 8.6         |
|       | 8  | 1,730 | 1,993       | 3,723 | 2,100 | 4.9       | 9.6         |
|       | 10 | 1,965 | 2,050       | 4,015 | 2,100 | 5.8       | 11.2        |
| 1500  | 12 | 2,200 | 2,050       | 4,250 | 2,100 | 6.7       | 13.2        |
| rpm   | 16 | 2,600 | 2,050       | 4,650 | 2,100 | 8.0       | 15.2        |
| 1800  | 18 | 2,800 | 2,680       | 5,480 | 2,100 | 8.9       | 16.8        |
| rpm   | 20 | 3,100 | 2,680       | 5,780 | 2,100 | 9.8       | 18.0        |
|       |    |       |             |       |       |           |             |





#### Remarks

Dimensions

cyl.

Depending on alternator.
 Without common bed.
 With Generator & Common bed (Maker : HHI-EES)

D: Min distance between engines – 2,305 mm

P: Free passage between the engines, width 600 mm and height 2,000 mm Note) All dimensions and weight are approximate value and subject to change without notice.

#### H17/28 I Bore: 170 mm, Stroke: 280 mm

#### Main Data

| Speed     | 900    | rpm    | 1000 rpm |        |  |
|-----------|--------|--------|----------|--------|--|
| Frequency | 60     | Hz     | 50 Hz    |        |  |
|           | Eng.kW | Gen.kW | Eng.kW   | Gen.kW |  |
| 5H17/28   | 575    | 538    | 600      | 561    |  |
| 6H17/28   | 690    | 645    | 720      | 673    |  |
| 7H17/28   | 805    | 757    | 840      | 790    |  |
| 8H17/28   | 920    | 865    | 960      | 902    |  |

Based on alternator efficiency of 93.5  $\sim$  94 %.

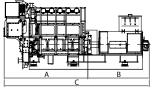
#### Specific Fuel Oil Consumption

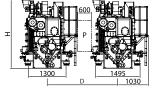
| Load | 900 rpm   | 1000 rpm  |
|------|-----------|-----------|
| 100% | 188 g/kWh | 188 g/kWh |

#### Main Data (for Higher Power Rating)

| Speed     | 900    | rpm    | 1000 rpm |        |  |
|-----------|--------|--------|----------|--------|--|
| Frequency | 60     | Hz     | 50 Hz    |        |  |
|           | Eng.kW | Gen.kW | Eng.kW   | Gen.kW |  |
| 6H17/28   | 750    | 701    | 750      | 701    |  |
| 7H17/28   | 875    | 823    | 875      | 823    |  |
| 8H17/28   | 1,000  | 940    | 1,000    | 940    |  |

Based on alternator efficiency of 93.5  $\sim$  94 %.


#### Specific Fuel Oil Consumption (for Higher Power Rating)


| Load | 900 rpm   | 1000 rpm  |
|------|-----------|-----------|
| 100% | 191 g/kWh | 191 g/kWh |

#### Specific Lubricating Oil Consumption

Lub. Oil: 0.6 g/kWh

| Dimensions |      |       |             |         |       |           |              |  |
|------------|------|-------|-------------|---------|-------|-----------|--------------|--|
| Created    | cyl. |       | Dimensi     | on (mm) |       | Dry Ma    | iss (ton)    |  |
| Speed      |      | А     | B 1)        | C 1)    | Н     | Engine 2) | GenSet 1),3) |  |
| 900 rpm    | 5    | 2,791 | 2,200       | 4,991   | 2,314 | 7.7       | 13.6         |  |
|            | 6    | 3,071 | 2,200       | 5,271   | 2,314 | 8.5       | 14.5         |  |
|            | 7    | 3,351 | 2,200       | 5,551   | 2,314 | 9.4       | 15.6         |  |
|            | 8    | 3,631 | 2,320       | 5,951   | 2,314 | 10.4      | 16.7         |  |
|            |      |       |             | ( )     |       |           | (r )         |  |
| Speed      | cyl. |       | Dimensi     | on (mm) |       | Dry Ma    | iss (ton)    |  |
| opeeu      |      | Α     | <b>B</b> 1) | C 1)    | Н     | Engine 2) | GenSet 1),3) |  |
| 1000       | 5    | 2,791 | 2,200       | 4,991   | 2,314 | 7.7       | 13.6         |  |
| rpm        | 6    | 3,071 | 2,200       | 5,271   | 2,314 | 8.5       | 14.5         |  |
|            | 7    | 3,351 | 2,200       | 5,551   | 2,314 | 9.4       | 15.6         |  |
|            | 8    | 3,631 | 2,320       | 5,951   | 2,314 | 10.4      | 16.7         |  |





Tier II, Tier III (with SCR)

#### Remarks

Depending on alternator.
 Without common base frame.
 With common base frame & alternator (Maker: HHI-EES).

D: Min. distance between engines 2,552 mm (with gallery). P: Free passage between the engines, width 600 mm and height 2,000 mm.

P: ree passage between the engines, which occiniting and height 2,000 mm. Note) All dimensions and weight are approximate value and subject to change without prior notice. Marine Offshore Gensets



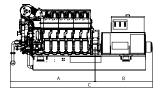
#### H17/28U(E) | Bore: 170 mm, Stroke: 280 mm

Main Data

| Speed     | 900    | rpm    | 1000 rpm |        |  |  |
|-----------|--------|--------|----------|--------|--|--|
| Frequency | 60     | Hz     | 50 Hz    |        |  |  |
|           | Eng.kW | Gen.kW | Eng.kW   | Gen.kW |  |  |
| 6H17/28E  | 660    | 618    | 660      | 618    |  |  |
| 6H17/28U  | 805    | 750    | 805      | 750    |  |  |

Based on alternator efficiency of 93.2 ~ 94 %.

#### Specific Fuel Oil Consumption


|          | Load | 900 rpm   | 1000 rpm  |
|----------|------|-----------|-----------|
| 6H17/28E | 100% | 189 g/kWh | 190 g/kWh |
| 6H17/28U | 100% | 191 g/kWh | 191 g/kWh |

#### Specific Lubricating Oil Consumption

Lub. Oil: 0.6 g/kWh

#### Tier II, Tier III (with SCR)

| Speed | cyl.     |       | Dimension (mm) |       |       |           | Dry Mass (ton) |  |  |
|-------|----------|-------|----------------|-------|-------|-----------|----------------|--|--|
| Speed |          | А     | B 1)           | C 1)  | Н     | Engine 2) | GenSet 1),3)   |  |  |
| 900   | 6H17/28E | 2,774 | 1,939          | 4,713 | 2,323 | 6.9       | 13.0           |  |  |
| rpm   | 6H17/28U | 2,774 | 2,069          | 4,843 | 2,393 | 7.1       | 13.8           |  |  |





#### Remarks

Dimensions

1) Depending on alternator.

- 2) Without common base frame.
- 3) With common base frame & alternator (Maker: HHI-EES).
- D: Min distance between engines 2,445 mm (with gallery).
- P: Free passage between the engines, width 600 mm and height 2,000 mm. Note) All dimensions and weight are approximate value and subject to change without prior notice.

#### This type of engine is optimized as planning products.

- 1. Optimized capacity for front module (pump, cooler, filter, valve, etc) .
- 2. Only 6cyl. for pump cover.
- 3. Optimized design for crankshaft, engine module.
- 4. Reducing of weight, simplification, etc.



#### H21/32 | Bore: 210 mm, Stroke: 320 mm

#### Main Data

| Speed     | 720 rpm |        | 750    | 750 rpm 900 |        | rpm    | 1000 rpm |        |
|-----------|---------|--------|--------|-------------|--------|--------|----------|--------|
| Frequency | 60 Hz   |        | 50 Hz  |             | 60 Hz  |        | 50 Hz    |        |
|           | Eng.kW  | Gen.kW | Eng.kW | Gen.kW      | Eng.kW | Gen.kW | Eng.kW   | Gen.kW |
| 5H21/32   | 800     | 752    | 800    | 752         | 960    | 910    | -        | -      |
| 6H21/32   | 960     | 902    | 960    | 902         | 1,200  | 1,140  | 1,200    | 1,140  |
| 7H21/32   | 1,120   | 1,064  | 1,120  | 1,064       | 1,400  | 1,330  | 1,400    | 1,330  |
| 8H21/32   | 1,280   | 1,216  | 1,280  | 1,216       | 1,600  | 1,520  | 1,600    | 1,520  |
| 9H21/32   | 1,440   | 1,368  | 1,440  | 1,368       | 1,800  | 1,710  | 1,800    | 1,710  |

Based on alternator efficiency of 94 ~ 95 %.

#### Specific Fuel Oil Consumption

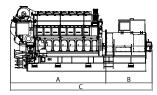
|   | Load  | 720 rpm   | 750 rpm   | 900 rpm   | 1000 rpm  |
|---|-------|-----------|-----------|-----------|-----------|
|   | 100 % | 182 g/kWh | 182 g/kWh | 183 g/kWh | 185 g/kWh |
| _ |       |           |           |           |           |

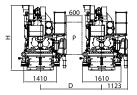
Exceptionally, 5H21/32 × 900 rpm is 190 g/kWh

#### Main Data (for Higher Power Rating)

| Speed     | 720 rpm |        | 750    | 750 rpm |        | 900 rpm |        | 1000 rpm |  |
|-----------|---------|--------|--------|---------|--------|---------|--------|----------|--|
| Frequency | 60 Hz   |        | 50     | 50 Hz   |        | 60 Hz   |        | 50 Hz    |  |
|           | Eng.kW  | Gen.kW | Eng.kW | Gen.kW  | Eng.kW | Gen.kW  | Eng.kW | Gen.kW   |  |
| 6H21/32   | 1,050   | 987    | 1,050  | 987     | 1,320  | 1,254   | 1,320  | 1,254    |  |
| 7H21/32   | 1,225   | 1,164  | 1,225  | 1,164   | 1,540  | 1,463   | 1,540  | 1,463    |  |
| 8H21/32   | 1,400   | 1,330  | 1,400  | 1,330   | 1,760  | 1,672   | 1,760  | 1,672    |  |
| 9H21/32   | 1,575   | 1,496  | 1,575  | 1,496   | 1,980  | 1,881   | 1,980  | 1,881    |  |

Based on alternator efficiency of 94 ~ 95 %.


#### Specific Fuel Oil Consumption (for Higher Power Rating)


| Load  | 720 rpm   | 750 rpm   | 900 rpm   | 1000 rpm  |
|-------|-----------|-----------|-----------|-----------|
| 100 % | 184 g/kWh | 184 g/kWh | 185 g/kWh | 187 g/kWh |

#### Specific Lub Oil Consumption (for Higher Power Rating) Lub. Oil: 0.6 g/kWh

| Dir   | Dimensions |      |             |         |         |           |                |              |  |  |
|-------|------------|------|-------------|---------|---------|-----------|----------------|--------------|--|--|
|       | Speed      | cyl. |             | Dimensi | on (mm) |           | Dry Ma         | ss (ton)     |  |  |
| 0     | peeu       |      | А           | B 1)    | C 1)    | Н         | Engine 2)      | GenSet 1),3) |  |  |
|       | 20 / 750   | 5    | 3,405       | 1,926   | 5,331   | 2,712     | 13.4           | 22.4         |  |  |
|       | rpm        | 6    | 3,781       | 2,009   | 5,790   | 2,712     | 15.1           | 24.5         |  |  |
|       |            | 7    | 4,111       | 2,092   | 6,203   | 2,781     | 16.7           | 26.5         |  |  |
|       |            | 8    | 4,453       | 2,175   | 6,628   | 2,781     | 18.4           | 29.1         |  |  |
|       |            | 9    | 4,783       | 2,265   | 7,048   | 2,911     | 19.8           | 31.7         |  |  |
| _     |            |      |             |         |         |           |                |              |  |  |
|       | Speed      | cyl. |             | Dimensi | on (mm) |           | Dry Mass (ton) |              |  |  |
| Speed |            | А    | <b>B</b> 1) | C 1)    | Н       | Engine 2) | GenSet 1),3)   |              |  |  |

|  | Croad             | · · · · |       | Diritorioi |       | 2.9 11000 (1011) |           |              |
|--|-------------------|---------|-------|------------|-------|------------------|-----------|--------------|
|  | Speed             |         | А     | B 1)       | C 1)  | Н                | Engine 2) | GenSet 1),3) |
|  | 900 / 1000<br>rpm | 5       | 3,411 | 2,097      | 5,508 | 2,712            | 13.4      | 22.9         |
|  |                   | 6       | 3,781 | 2,180      | 5,961 | 2,781            | 15.1      | 25.1         |
|  |                   | 7       | 4,111 | 2,263      | 6,374 | 2,781            | 16.7      | 27.5         |
|  |                   | 8       | 4,453 | 2,345      | 6,798 | 2,911            | 18.4      | 29.9         |
|  |                   | 9       | 4,783 | 2,423      | 7,206 | 2,911            | 19.8      | 31.9         |
|  |                   |         |       |            |       |                  |           |              |





Tier II, Tier III (with SCR)

#### Remarks

- 1) Depending on alternator. 2) Without common base frame.
- 3) With common base frame & alternator (Maker: HHI-EES).

D: Min. distance between engines 2,613 mm (with gallery). P: Free passage between the engines, width 600 mm and height 2,000 mm. Note) All dimensions and weight are approximate value and subject to change without prior notice.



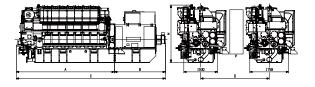
#### H21C I Bore: 210 mm, Stroke: 330 mm

#### Main Data

| Speed     | 900    | rpm    | 1000 rpm |        |  |
|-----------|--------|--------|----------|--------|--|
| Frequency | 60     | Hz     | 50       | Hz     |  |
|           | Eng.kW | Gen.kW | Eng.kW   | Gen.kW |  |
| 5H21C     | 1,200  | 1,140  | 1,200    | 1,140  |  |
| 6H21C     | 1,440  | 1,368  | 1,440    | 1,368  |  |
| 7H21C     | 1,680  | 1,596  | 1,680    | 1,596  |  |
| 8H21C     | 1,920  | 1,824  | 1,920    | 1,824  |  |
| 9H21C     | 2,160  | 2,052  | 2,160    | 2,052  |  |

Based on alternator efficiency of 94 ~ 95 %.

#### Specific Fuel Oil Consumption


| Load | 900 rpm | 1000 rpm |
|------|---------|----------|
| 85 % | 180     | 0 g/kWh  |

#### Specific Lubricating Oil Consumption

Lub. Oil: 0.6 g/kWh

#### Tier II, Tier III (with SCR)

|  | Dimensio |      |       |         |         |             |           |              |  |  |  |
|--|----------|------|-------|---------|---------|-------------|-----------|--------------|--|--|--|
|  | Speed    | cyl. |       | Dimensi | on (mm) | mm) Dry Mas |           |              |  |  |  |
|  | Speed    |      | А     | B 1)    | C 1)    | Н           | Engine 2) | GenSet 1),3) |  |  |  |
|  | 900/1000 | 5    | 3,735 | 2,249   | 5,984   | 2,600       | 14.3      | 22.1         |  |  |  |
|  | rpm      | 6    | 4,085 | 2,249   | 6,334   | 2,600       | 16.0      | 24.9         |  |  |  |
|  |          | 7    | 4,435 | 2,305   | 6,740   | 2,600       | 17.8      | 28.3         |  |  |  |
|  |          | 8    | 4,785 | 2,305   | 7,090   | 2,653       | 19.4      | 30.2         |  |  |  |
|  |          | 9    | 5,135 | 2,450   | 7,585   | 2,653       | 21.0      | 33.6         |  |  |  |



#### Remarks

Dimonsions

Depending on alternator.
 Without common base frame.
 With common base frame & alternator (Maker: HHI-EES).

D: Min. distance between engines 2,990 mm (with gallery).
 P: Free passage between the engines, width 600 mm and height 2,000 mm.
 Note) All dimensions and weight are approximate value and subject to change without prior notice.



#### H25/33 I Bore: 250 mm, Stroke: 330 mm

#### Main Data

| Speed     | 720    | rpm    | 750    | rpm    | 900    | rpm    | 1000   | ) rpm  |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|
| Frequency | 60     | Hz     | 50     | Hz     | 60     | Hz     | 50     | Hz     |
|           | Eng.kW | Gen.kW | Eng.kW | Gen.kW | Eng.kW | Gen.kW | Eng.kW | Gen.kW |
| 6H25/33   | 1,440  | 1,368  | 1,500  | 1,425  | 1,800  | 1,710  | 1,800  | 1,710  |
| 7H25/33   | 1,680  | 1,596  | 1,750  | 1,663  | 2,100  | 1,995  | 2,100  | 1,995  |
| 8H25/33   | 1,920  | 1,824  | 2,000  | 1,900  | 2,400  | 2,280  | 2,400  | 2,280  |
| 9H25/33   | 2,160  | 2,052  | 2,250  | 2,138  | 2,700  | 2,565  | 2,700  | 2,565  |
|           |        |        |        |        |        |        |        |        |

Based on alternator efficiency of 95 %.

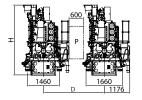
#### Specific Fuel Oil Consumption

| Load  | 720 rpm   | 750 rpm   | 900 rpm   | 1000 rpm  |
|-------|-----------|-----------|-----------|-----------|
| 100 % | 180 g/kWh | 180 g/kWh | 181 g/kWh | 181 g/kWh |

#### Main Data (for Higher Power Rating)

| Speed     | 720    | rpm    | 750    | rpm    | 900    | rpm    | 1000   | ) rpm  |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|
| Frequency | 60     | Hz     | 50     | Hz     | 60     | Hz     | 50     | Hz     |
|           | Eng.kW | Gen.kW | Eng.kW | Gen.kW | Eng.kW | Gen.kW | Eng.kW | Gen.kW |
| 6H25/33   | 1,560  | 1,482  | 1,650  | 1,568  | 1,890  | 1,796  | 1,980  | 1,881  |
| 7H25/33   | 1,820  | 1,729  | 1,925  | 1,829  | 2,205  | 2,095  | 2,310  | 2,195  |
| 8H25/33   | 2,080  | 1,976  | 2,200  | 2,090  | 2,520  | 2,394  | 2,640  | 2,508  |
| 9H25/33   | 2,340  | 2,223  | 2,475  | 2,351  | 2,835  | 2,693  | 2,970  | 2,822  |

Based on alternator efficiency of 95 %.


#### Specific Fuel Oil Consumption (for Higher Power Rating)

| Load  | 720 rpm   | 750 rpm   | 900 rpm   | 1000 rpm  |
|-------|-----------|-----------|-----------|-----------|
| 100 % | 182 g/kWh | 182 g/kWh | 183 g/kWh | 183 g/kWh |

Specific Lubricating Oil Consumption Lub. Oil: 0.6 g/kWh

| Dimensio | าร   |       |             |                |       |           |              |
|----------|------|-------|-------------|----------------|-------|-----------|--------------|
| Oneral   | cyl. |       | Dimensi     | Dry Mass (ton) |       |           |              |
| Speed    |      | А     | <b>B</b> 1) | C 1)           | Н     | Engine 2) | GenSet 1),3) |
| 720/750  | 6    | 4,414 | 2,262       | 6,676          | 2,961 | 20.2      | 29.8         |
| rpm      | 7    | 4,797 | 2,262       | 7,059          | 2,961 | 22.5      | 32.3         |
|          | 8    | 5,311 | 2,262       | 7,573          | 3,241 | 24.1      | 34.1         |
|          | 9    | 5,691 | 2,262       | 7,953          | 3,371 | 26.2      | 36.4         |
|          |      |       |             |                |       |           |              |
| Speed    | cyl. |       | Dimensi     | on (mm)        |       | Dry Ma    | lss (ton)    |
| Speeu    |      | А     | <b>B</b> 1) | C 1)           | Н     | Engine 2) | GenSet 1),3) |
| 900/1000 | 6    | 4,414 | 2,262       | 6,676          | 2,961 | 20.2      | 30.2         |
| rpm      | 7    | 4,797 | 2,262       | 7,059          | 3,241 | 22.5      | 32.7         |
|          | 8    | 5,311 | 2,340       | 7,651          | 3,371 | 24.1      | 34.9         |
|          | 9    | 5,691 | 2,490       | 8,181          | 3,371 | 26.2      | 37.2         |

## 



Tier II, Tier III (with SCR)

#### Remarks

Depending on alternator.
 Without common base frame.
 With common base frame & alternator (Maker: HHI-EES).

D: Min. distance between engines 2,844 mm (with gallery).
 P: Free passage between the engines, width 600 mm and height 2,000 mm.
 Note) All dimensions and weight are approximate value and subject to change without prior notice.

Marine Offshore Gensets



#### H25/33V I Bore: 250 mm, Stroke: 330 mm

#### Main Data

| Speed     | 900 rpm |               | 1000  | ) rpm  |
|-----------|---------|---------------|-------|--------|
| Frequency | 60      | Hz            | 50 Hz |        |
|           | Eng.kW  | Eng.kW Gen.kW |       | Gen.kW |
| 12H25/33V | 4,080   | 3,917         | 4,080 | 3,917  |
| 14H25/33V | 4,760   | 4,570         | 4,760 | 4,570  |
| 16H25/33V | 5,440   | 5,222         | 5,440 | 5,222  |
| 18H25/33V | 6,120   | 5,875         | 6,120 | 5,875  |
| 20H25/33V | 6,800   | 6,528         | 6,800 | 6,528  |

Based on alternator efficiency of 96 %.

#### Specific Fuel Oil Consumption

| Load  | 900 rpm     | 1000 rpm  |  |
|-------|-------------|-----------|--|
| 100 % | 5 183 g/kWł | 183 g/kWh |  |

#### Specific Lubricating Oil Consumption

Lub. Oil: 0.6 g/kWh

#### Tier II, Tier III (with SCR)

| Dimensio | ns   |       |         |         |       |           |              |
|----------|------|-------|---------|---------|-------|-----------|--------------|
| Owned    | cyl. |       | Dimensi | on (mm) |       | Dry Ma    | iss (ton)    |
| Speed    |      | А     | B 1)    | C 1)    | Н     | Engine 2) | GenSet 1),3) |
| 900/1000 | 12   | 5,524 | 3,334   | 8,858   | 3,750 | 33.5      | 58.2         |
| rpm      | 14   | 5,944 | 3,504   | 9,448   | 3,750 | 36.5      | 63.4         |
|          | 16   | 6,364 | 3,682   | 10,046  | 3,750 | 39.5      | 69.6         |
|          | 18   | 6,784 | 3,772   | 10,556  | 3,750 | 42.5      | 77.5         |
|          | 20   | 7,204 | 3,727   | 10,931  | 3,750 | 45.5      | 79.5         |

#### Remarks

Depending on alternator.
 Without common base frame.
 With common base frame & alternator (Maker: HHI-EES).

D: Min. distance between engines 3,840 mm (with gallery).
 P: Free passage between the engines, width 600 mm and height 2,000 mm.
 Note) All dimensions and weight are approximate value and subject to change without prior notice.

R



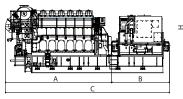
#### H32/40 I Bore: 320 mm, Stroke: 400 mm

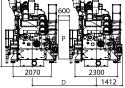
#### Main Data

| Speed     | 720    | rpm    | 750    | rpm    |
|-----------|--------|--------|--------|--------|
| Frequency | 60     | Hz     | 50     | Hz     |
|           | Eng.kW | Gen.kW | Eng.kW | Gen.kW |
| 6H32/40   | 3,000  | 2,880  | 3,000  | 2,880  |
| 7H32/40   | 3,500  | 3,360  | 3,500  | 3,360  |
| 8H32/40   | 4,000  | 3,840  | 4,000  | 3,840  |
| 9H32/40   | 4,500  | 4,320  | 4,500  | 4,320  |
|           |        |        |        | 1.0    |

Based on alternator efficiency of 96 %.

#### Specific Fuel Oil Consumption


| Load  | 720 rpm   | 750 rpm   |
|-------|-----------|-----------|
| 100 % | 179 g/kWh | 181 g/kWh |


#### Specific Lubricating Oil Consumption

Lub. Oil: 0.5 g/kWh

#### Tier II, Tier III (with SCR)

| Speed            | cyl.      |                   | Dimensi                | ion (mm)               |                | Dry Ma                    | iss (ton)                    |
|------------------|-----------|-------------------|------------------------|------------------------|----------------|---------------------------|------------------------------|
| Speed            |           | А                 | B 1)                   | C 1)                   | Н              | Engine 2)                 | GenSet 1),3)                 |
| 720 rpm          | 6         | 5,760             | 3,130                  | 8,890                  | 3,959          | 33.7                      | 68.6                         |
|                  | 7         | 6,112             | 3,374                  | 9,486                  | 4,130          | 38.6                      | 77.1                         |
|                  | 8         | 6,602             | 3,594                  | 10,196                 | 4,130          | 41.5                      | 82.0                         |
|                  | 9         | 7,092             | 4,097                  | 11,189                 | 4,130          | 44.6                      | 89.1                         |
|                  |           |                   |                        |                        |                |                           |                              |
|                  |           |                   |                        |                        |                |                           |                              |
| Croad            | cyl.      |                   | Dimens                 | ion (mm)               |                | Dry Ma                    | iss (ton)                    |
| Speed            | cyl.      | А                 | Dimens<br>B 1)         | ion (mm)<br>C 1)       | Н              | Dry Ma<br>Engine 2)       | ISS (ton)<br>GenSet 1),3)    |
| Speed<br>750 rpm | cyl.<br>6 | <b>A</b><br>5,760 |                        | · · /                  | H<br>3,959     |                           | · · ·                        |
|                  |           |                   | <b>B</b> 1)            | C 1)                   |                | Engine 2)                 | GenSet 1),3)                 |
|                  | 6         | 5,760             | B 1)<br>3,130          | C 1)<br>8,890          | 3,959          | Engine 2)<br>33.7         | GenSet 1),3)<br>68.6         |
|                  | 6<br>7    | 5,760<br>6,112    | B 1)<br>3,130<br>3,374 | C 1)<br>8,890<br>9,486 | 3,959<br>4,130 | Engine 2)<br>33.7<br>38.6 | GenSet 1),3)<br>68.6<br>77.1 |





#### Remarks

Dimensions

Depending on alternator.
 Without common base frame.
 With common base frame & alternator (Maker: HHI-EES).

D: Min. distance between engines 3,408 mm (with gallery).
 P: Free passage between the engines, width 600 mm and height 2,000 mm.
 Note) All dimensions and weight are approximate value and subject to change without prior notice.

1 S

Marine Offshore Gensets



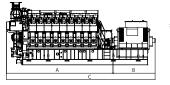
#### H32/40V I Bore: 320 mm, Stroke: 400 mm

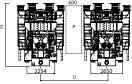
#### Main Data

| Speed     | 720    | rpm    | 750    | rpm    |
|-----------|--------|--------|--------|--------|
| Frequency | 60     | Hz     | 50 Hz  |        |
|           | Eng.kW | Gen.kW | Eng.kW | Gen.kW |
| 12H32/40V | 6,000  | 5,760  | 6,000  | 5,760  |
| 14H32/40V | 7,000  | 6,720  | 7,000  | 6,720  |
| 16H32/40V | 8,000  | 7,680  | 8,000  | 7,680  |
| 18H32/40V | 9,000  | 8,640  | 9,000  | 8,640  |
| 20H32/40V | 10,000 | 9,600  | 10,000 | 9,600  |
|           |        |        |        |        |

Based on alternator efficiency of 96 %.

#### Specific Fuel Oil Consumption


| Load  | 720 rpm   | 750 rpm   |
|-------|-----------|-----------|
| 100 % | 179 g/kWh | 181 g/kWh |


#### Specific Lubricating Oil Consumption

Lub. Oil: 0.5 g/kWh

## Tier II, Tier III (with SCR)

| Speed   | cyl.     |                         | Dimensi                 | ion (mm)                   |                         | Dry Ma               | iss (ton)                     |
|---------|----------|-------------------------|-------------------------|----------------------------|-------------------------|----------------------|-------------------------------|
| Speed   |          | А                       | B 1)                    | C 1)                       | Н                       | Engine 2)            | GenSet 1),3                   |
| 720 rpm | 12       | 6,624                   | 3,760                   | 10,384                     | 4,723                   | 56.0                 | 108.8                         |
|         | 14       | 7,295                   | 3,860                   | 11,155                     | 4,723                   | 63.3                 | 121.3                         |
|         | 16       | 7,914                   | 3,479                   | 11,393                     | 4,723                   | 69.1                 | 130.9                         |
|         | 18       | 8,585                   | 3,859                   | 12,444                     | 4,794                   | 76.3                 | 141.2                         |
|         | 20       | 9,344                   | 3,659                   | 13,003                     | 4,794                   | 84.0                 | 153.9                         |
|         | cyl.     | Dimension (mm)          |                         |                            | Drv Ma                  | iss (ton)            |                               |
| Speed   | • )      | А                       | B <sub>10</sub>         | C 1)                       | Н                       |                      | × /                           |
|         |          |                         | 0 1)                    | 0 1)                       |                         |                      | GenSet 1),3                   |
| 750 rpm | 12       | 6,624                   | 3,760                   | 10,384                     | 4,723                   | 56.0                 | GenSet 1),3                   |
| 750 rpm | 12<br>14 |                         | .,                      | - 1                        |                         | · · ·                | GenSet 1),3<br>108.8<br>121.3 |
| 750 rpm |          | 6,624                   | 3,760                   | 10,384                     | 4,723                   | 56.0                 | 108.8                         |
| 750 rpm | 14       | 6,624<br>7,295          | 3,760<br>3,860          | 10,384<br>11,155           | 4,723<br>4,723          | 56.0<br>63.3         | 108.8<br>121.3                |
| 750 rpm | 14<br>16 | 6,624<br>7,295<br>7,914 | 3,760<br>3,860<br>3,479 | 10,384<br>11,155<br>11,393 | 4,723<br>4,723<br>4,723 | 56.0<br>63.3<br>69.1 | 108.8<br>121.3<br>130.9       |





#### Remarks

Dimonsions

Depending on alternator.
 Without common base frame.
 With common base frame & alternator (Maker: HHI-EES).

D: Min. distance between engines 4,405 mm (with gallery).

P: Free passage between the engines, width 600 mm and height 2,000 mm. Note) All dimensions and weight are approximate value and subject to change without prior notice.



#### H22CDF | Bore: 220mm, Stroke: 330mm

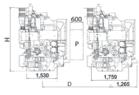
#### Main Data

| Speed     | 900    | rpm    | 1,000  | ) rpm  |  |
|-----------|--------|--------|--------|--------|--|
| Frequency | 60     | Hz     | 50 Hz  |        |  |
|           | Eng.kW | Gen.kW | Eng.kW | Gen.kW |  |
| 5H22CDF   | 1,075  | 1,011  | 1,100  | 1,034  |  |
| 6H22CDF   | 1,290  | 1,220  | 1,320  | 1,248  |  |
| 7H22CDF   | 1,505  | 1,423  | 1,540  | 1,463  |  |
| 8H22CDF   | 1,720  | 1,634  | 1,760  | 1,672  |  |
| 9H22CDF   | 1,935  | 1,839  | 1,980  | 1,881  |  |

Based on alternator efficiency of 94~95 %.

#### Heat Rate & SFOC (100% Load)

| Load               | 900 rpm      | 1,000 rpm   |
|--------------------|--------------|-------------|
| Heat Rate@Gas mode | 8,049 kJ/kWh | 8,079kJ/kWh |
| SFOC@Diesel mode   | 192 g/kWh    | 192 g/kWh   |


#### Specific Lubricating Oil Consumption

Lub. Oil: 0.6 g/kWh

| Dimensio | ns   |       |         |         |       |           |                |  |
|----------|------|-------|---------|---------|-------|-----------|----------------|--|
| Owned    | cyl. |       | Dimensi | on (mm) |       | Dry Ma    | Dry Mass (ton) |  |
| Speed    |      | А     | B 1)    | C 1)    | Н     | Engine 2) | GenSet 1),3)   |  |
| 900      | 5    | 3,735 | 2,249   | 5,984   | 2,946 | 15.3      | 23.1           |  |
| /        | 6    | 4,085 | 2,249   | 6,334   | 2,946 | 17.0      | 25.9           |  |
| 1,000    | 7    | 4,435 | 2,305   | 6,740   | 2,946 | 18.8      | 29.3           |  |
| rpm      | 8    | 4,785 | 2,305   | 7,090   | 2,946 | 20.4      | 31.2           |  |
|          | 9    | 5 135 | 2 450   | 7 585   | 2 946 | 22.0      | 34.6           |  |



## 



#### Remarks

Depending on alternator.
 Without common base frame.
 With common base frame & alternator (Maker: HHI-EES).

D: Min. distance between engines 2,990 mm (with gallery).

P: Free passage between the engines, width 600 mm and height 2,000 mm. Note) All dimensions and weight are approximate value and subject to change without prior notice. Engine & Machinery Division

#### H27DF I Bore: 270 mm, Stroke: 330 mm

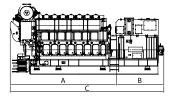
| Main Data      | L    |        |         |        |         |        |        |          |        |  |
|----------------|------|--------|---------|--------|---------|--------|--------|----------|--------|--|
| Spee           | ed   | 720    | 720 rpm |        | 750 rpm |        | rpm    | 1000 rpm |        |  |
| Freque         | ency | 60 Hz  |         | 50     | 50 Hz   |        | 60 Hz  |          | 50 Hz  |  |
|                |      | Eng.kW | Gen.kW  | Eng.kW | Gen.kW  | Eng.kW | Gen.kW | Eng.kW   | Gen.kW |  |
| 6H27           | DF   | 1,368  | 1,300   | 1,422  | 1,351   | 1,710  | 1,625  | 1,860    | 1,767  |  |
| 7H27           | DF   | 1,596  | 1,516   | 1,659  | 1,576   | 1,995  | 1,895  | 2,170    | 2,062  |  |
| 8H27           | DF   | 1,824  | 1,733   | 1,896  | 1,801   | 2,280  | 2,166  | 2,480    | 2,356  |  |
| 9H27           | DF   | 2,052  | 1,949   | 2,133  | 2,026   | 2,565  | 2,437  | 2,790    | 2,651  |  |
| Description of |      |        |         |        |         |        |        |          |        |  |

Based on alternator efficiency of 95 %.

#### Heat Rate & SFOC (100% Load)

| Load                 | 720 rpm | 750 rpm | 900 rpm | 1000 rpm |
|----------------------|---------|---------|---------|----------|
| Heat rate @ Gas mode |         | 7,729   | kJ/kWh  |          |
| SFOC @ Diesel mode   |         | 186 g   | ı/kWh   |          |

#### Specific Lubricating Oil Consumption Lub. Oil: 0.6 g/kWh


| Dimension | 13   |       |             |         |                |           |              |
|-----------|------|-------|-------------|---------|----------------|-----------|--------------|
| Speed     | cyl. |       | Dimensi     |         | Dry Mass (ton) |           |              |
| Speed     |      | А     | <b>B</b> 1) | C 1)    | Н              | Engine 2) | GenSet 1),3) |
| 720 / 750 | 6    | 4,414 | 2,262       | 6,676   | 3,103          | 23.5      | 33.3         |
| rpm       | 7    | 4,797 | 2,262       | 7,059   | 3,241          | 27.7      | 37.3         |
|           | 8    | 5,311 | 2,262       | 7,573   | 3,241          | 34.0      | 44.0         |
|           | 9    | 5,691 | 2,262       | 7,953   | 3,371          | 36.2      | 46.4         |
|           |      |       |             |         |                |           |              |
| Speed     | cyl. |       | Dimensi     | on (mm) |                | Dry Ma    | lss (ton)    |
| Speed     |      | А     | <b>B</b> 1) | C 1)    | Н              | Engine 2) | GenSet 1),3) |
| 900/1000  | 6    | 4,414 | 2,262       | 6,676   | 3,103          | 23.5      | 33.7         |
| rpm       | 7    | 4,797 | 2,262       | 7,059   | 3,241          | 27.7      | 37.3         |

7,651

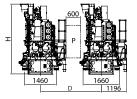
8,181

3,371

3,371



5,311


5,691

2,340

2,490

8

9



34.0

36.2

#### Remarks

Dimensions

Depending on alternator.
 Without common base frame.
 With common base frame & alternator (Maker: HHI-EES).

D: Min. distance between engines 2,844 mm (with gallery).
 P: Free passage between the engines, width 600 mm and height 2,000 mm.
 Note) All dimensions and weight are approximate value and subject to change without prior notice.

**Dual Fuel Engine** 

Tier II, Tier III

44.8

47.2

Marine Offshore Gensets



#### H35DF I Bore: 350 mm, Stroke: 400 mm

#### Main Data

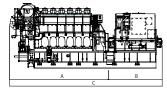
| Speed     | 720    | rpm    | 750    | rpm    |
|-----------|--------|--------|--------|--------|
| Frequency | 60     | Hz     | 50     | Hz     |
|           | Eng.kW | Gen.kW | Eng.kW | Gen.kW |
| 6H35DF    | 2,880  | 2,779  | 2,880  | 2,779  |
| 7H35DF    | 3,360  | 3,242  | 3,360  | 3,242  |
| 8H35DF    | 3,840  | 3,706  | 3,840  | 3,706  |
| 9H35DF    | 4,320  | 4,169  | 4,320  | 4,169  |
|           |        |        |        |        |

Based on alternator efficiency of 96.5 %.

#### Heat Rate & SFOC (100% Load)

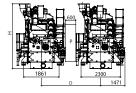
|                      | 720 rpm / 60 Hz | 750 rpm / 50 Hz |
|----------------------|-----------------|-----------------|
| Heat rate @ Gas mode | 7,270 kJ/kWh    | 7,270 kJ/kWh    |
| SFOC @ Diesel mode   | 183 g/kWh       | 185 g/kWh       |

### Specific Lubricating Oil Consumption


Lub. Oil: 0.4 g/kWh

| Crossed | cyl. |       | Dimens | ion (mm) |       | Dry Ma    | iss (ton)    |
|---------|------|-------|--------|----------|-------|-----------|--------------|
| Speed   |      | А     | B 1)   | C 1)     | Н     | Engine 2) | GenSet 1),3) |
| 720 rpm | 6    | 5,760 | 3,130  | 8,890    | 4,367 | 34.7      | 69.6         |
|         | 7    | 6,112 | 3,374  | 9,486    | 4,538 | 39.6      | 78.1         |
|         | 8    | 6,602 | 3,594  | 10,196   | 4,538 | 42.5      | 83.0         |
|         | 9    | 7,092 | 4,097  | 11,189   | 4,538 | 45.6      | 90.1         |
|         |      |       |        |          |       |           |              |
| Onered  | cyl. |       | Dimens | ion (mm) |       | Dry Ma    | iss (ton)    |
| Speed   |      | А     | B 1)   | C 1)     | Н     | Engine 2) | GenSet 1),3) |
| 750 rpm | 6    | 5,760 | 3,130  | 8,890    | 4,367 | 34.7      | 69.6         |
|         | 7    | 6,112 | 3,374  | 9,486    | 4,538 | 39.6      | 78.1         |
|         | 8    | 6.602 | 3.594  | 10.196   | 4.538 | 40 F      | 83.0         |
|         | 0    | 0,002 | 0,004  | 10,130   | 4,000 | 42.5      | 00.0         |

11,189


4,538

4,097



7,092

9



45.6

#### Remarks

Dimensions

Depending on alternator.
 Weight included a standard alternator (Maker : HHI-EES)
 With Common base frame

D: Min. distance between engines : 3,037 mm (with gallery).
P: Free passage between the engines : 600 mm x 2,000 mm.
Note) All dimensions and weight are approximate value and subject to change without prior notice.

90.1

Engine & Machinery Division



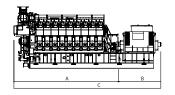
#### H35DFV I Bore: 350 mm, Stroke: 400 mm

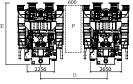
#### Main Data

| Speed     | 720    | rpm    | 750    | rpm    |  |
|-----------|--------|--------|--------|--------|--|
| Frequency | 60     | Hz     | 50 Hz  |        |  |
|           | Eng.kW | Gen.kW | Eng.kW | Gen.kW |  |
| 12H35DFV  | 5,760  | 5,587  | 5,760  | 5,587  |  |
| 14H35DFV  | 6,720  | 6,518  | 6,720  | 6,518  |  |
| 16H35DFV  | 7,680  | 7,449  | 7,680  | 7,449  |  |
| 18H35DFV  | 8,640  | 8,380  | 8,640  | 8,380  |  |
| 20H35DFV  | 9,600  | 9,312  | 9,600  | 9,312  |  |
|           |        |        |        |        |  |

Based on alternator efficiency of 97 %.

#### Heat Rate & SFOC (100% Load)


|                      | 720 rpm / 60 Hz | 750 rpm / 50 Hz |  |  |
|----------------------|-----------------|-----------------|--|--|
| Heat rate @ Gas mode | 7,270 kJ/kWh    | 7,270 kJ/kWh    |  |  |
| SFOC @ Diesel mode   | 183 g/kWh       | 185 g/kWh       |  |  |


#### Specific Lubricating Oil Consumption

Lub. Oil: 0.4 g/kWh

#### Dual Fuel Engine Tier II, Tier III

| Owned            | cyl.           | Dimension (mm)          |                                 |                                               |                         | Dry Mass (ton)                    |                                        |
|------------------|----------------|-------------------------|---------------------------------|-----------------------------------------------|-------------------------|-----------------------------------|----------------------------------------|
| Speed            |                | А                       | B 1)                            | C 1)                                          | Н                       | Engine 2)                         | GenSet 1),3)                           |
| 720 rpm          | 12             | 6,624                   | 3,760                           | 10,384                                        | 4,723                   | 58.0                              | 110.8                                  |
|                  | 14             | 7,295                   | 3,860                           | 11,155                                        | 4,723                   | 65.3                              | 123.3                                  |
|                  | 16             | 7,914                   | 3,479                           | 11,393                                        | 4,723                   | 71.1                              | 132.9                                  |
|                  | 18             | 8,585                   | 3,859                           | 12,444                                        | 4,794                   | 78.3                              | 143.2                                  |
|                  | 20             | 9,344                   | 3,659                           | 13,003                                        | 4,794                   | 86.0                              | 155.9                                  |
|                  |                | Dimension (mm)          |                                 |                                               |                         | Dry Mass (ton)                    |                                        |
|                  | CVI.           |                         | Dimens                          |                                               |                         | Dry Ivia                          | ISS (ton)                              |
| Speed            | cyl.           | А                       | B 1)                            | C 1)                                          | Н                       | Engine 2)                         | · · ·                                  |
| Speed<br>750 rpm | суі.<br>12     | <b>A</b><br>6,624       |                                 | · · /                                         | H<br>4,723              |                                   | · · ·                                  |
|                  |                |                         | B 1)                            | C 1)                                          |                         | Engine 2)                         | GenSet 1),3                            |
|                  | 12             | 6,624                   | B 1)<br>3,760                   | C 1)<br>10,384                                | 4,723                   | Engine 2)<br>58.0                 | GenSet 1),3<br>110.8                   |
|                  | 12<br>14       | 6,624<br>7,295          | B 1)<br>3,760<br>3,860          | C <sub>1)</sub><br>10,384<br>11,155           | 4,723<br>4,723          | Engine 2)<br>58.0<br>65.3         | GenSet 1),3<br>110.8<br>123.3          |
|                  | 12<br>14<br>16 | 6,624<br>7,295<br>7,914 | B 1)<br>3,760<br>3,860<br>3,479 | C <sub>1)</sub><br>10,384<br>11,155<br>11,393 | 4,723<br>4,723<br>4,723 | Engine ₂)<br>58.0<br>65.3<br>71.1 | GenSet 1),3<br>110.8<br>123.3<br>132.9 |



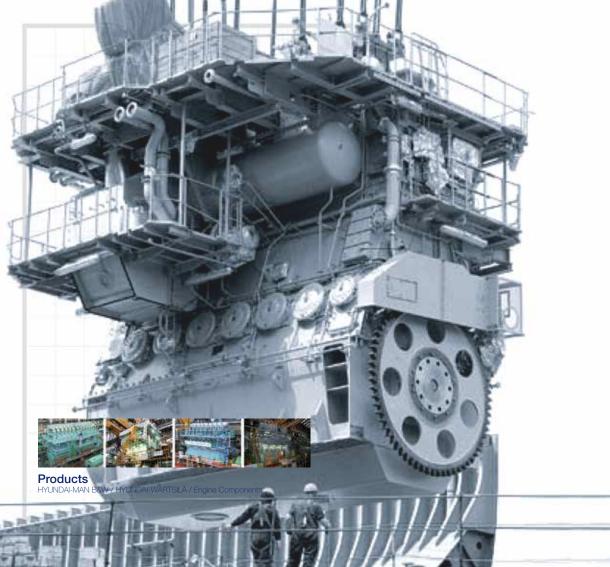


#### Remarks

Dimensions

1) Depending on alternator.

2) Without common base frame.


3) With common base frame & alternator (Maker: HHI-EES).

D: Min. distance between engines 4,405 mm (with gallery).

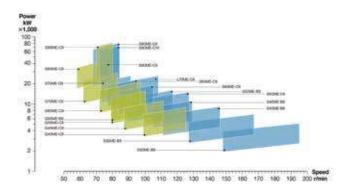
P: Free passage between the engines, width 600 mm and height 2,000 mm. Note) All dimensions and weight are approximate value and subject to change without prior notice. Marine Offshore Gensets

ន្រ





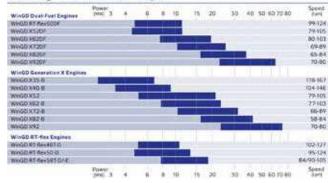
## Marine 2-Stroke Engine


Marine 2-Stroke Engine



## 2-Stroke Engine

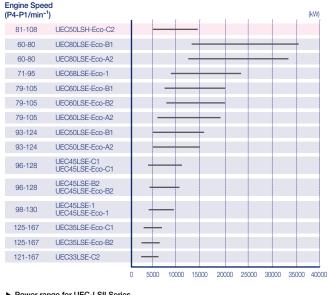
HHI-EMD has been supplying "One out of Three" of the world's 2-stroke engines for marine propulsion and power generation in pursuit of providing our valuable customers with high quality and more economical products. HHI-EMD's established reputation is supported by its superb performance in marine and stationary engines along with its state-oftheart facilities such as foundry, forging, machining, crankshaft, and assembly & test shops specializing in manufacturing engines.

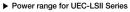

#### **HYUNDAI-MAN B&W**

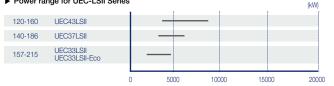




#### **HYUNDAI-WinGD**


#### WinGD Low-speed Engines





Power range for WieGD Low-speed Engines.

#### **UE Engine**

#### Power range for UEC-LSE/H Series







1

Engine & Machinery Division





**HYUNDAI** Propeller

### HIMSEN.

# **HYUNDAI PROPELLER**

### **Propeller shop**

HHI produces a wide variety of marine propellers. Our propellers have a diameter up to 11,000 mm, with maximum unit weight of 114,000 kg, and are typically made of manganese bronze and nickel-aluminum bronze. We employ a comprehensively computerized design, manufacturing, and inspection system for these products.

### **Production Capacity**

Max. | 114 ton in Weight, 11 m in Diameter Min. | 10 ton in Weight, 3 m in Diameter



World's Largest Propeller Weight 110.2 ton Diameter 10.4 m Blade 5 Ship type 18,800 TEU Container

# Shaft PropellerShaft / IntermediateShaftRudder Stock Straight Type

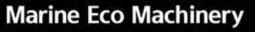


Production Capacity Max. | 120 ton in Weight | 2,200 mm in Diameter | 18,000 mm in Length

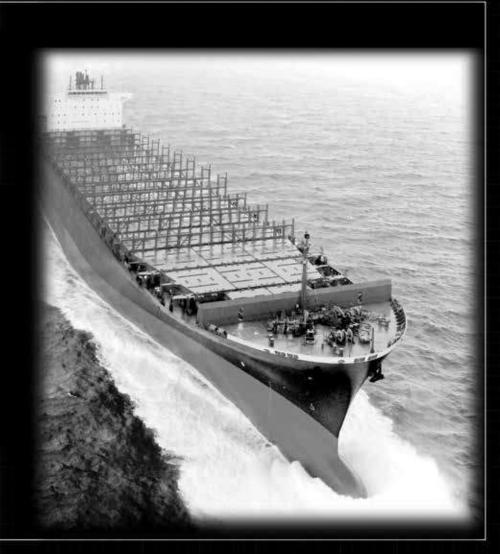
Min. | 300 mm in Diameter | 2,000 mm in Length



# Turbocharger


Based on the most up-to-date technology accumulated through its wealth of experience in manufacturing diesel engines and a wide variety of precision machinery, HHI-ENID produces exhaust gas turbochargers : ABB's TPL and A type, and MHI's MET type for turbocharging diesel engines under a technical tie-up with ABB Turbo Systems Ltd. of Switzerland and Mitsubishi Heavy Industries Ltd. of Japan, respectively who themselves have more than 40 years' experience in the field of designing and manufacturing turbochargers.

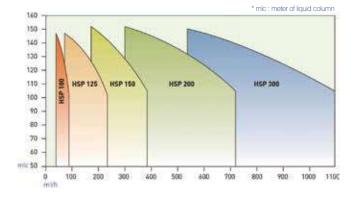
# Products


- A165 / A265 / A270 / A175 / A275 / A180 / A280 / A185 / A190 - MET66MB / MET71MB / MET83MB /



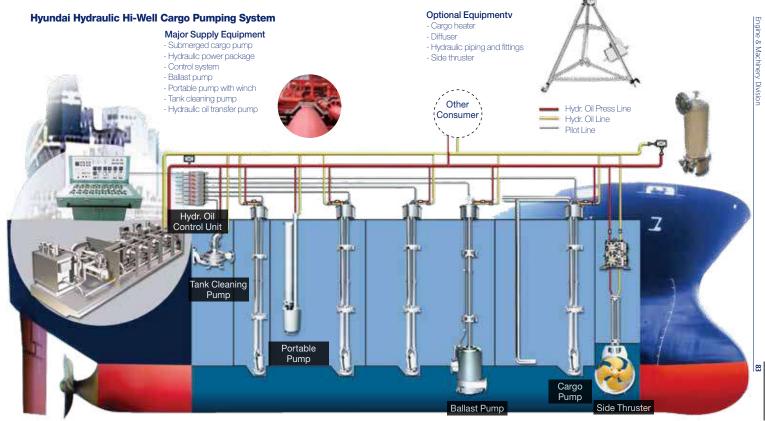





Hyundai Heavy Industries Co., Ltd.






### **Pump Selection Chart**

Optimum pump capacities are achieved by selecting high efficiency models for the customer's requirements of flow rates, heads and others. We provide customers with a proposal for a complete **Hi-Well Cargo Pumping System** based on customer's information about total tank volume, total discharge rates, total head and others.



2

# Hi-tilell Cargo Pump







# Hyundai integrated GAs Supply system

Hi-GAS



### Hi-GAS Package solution LNG Fuel Gas Supply System

The LNG market is developing rapidly, and the demand for LNG carriers and LNG fueled ships is increasing because LNG is a very attractive solution from an emission and economic point of view. The high efficiency of dual fuel engines has made the engine market the preferred prime mover choice for new projects. HHI-EMD has rich experience in manufacturing both the ME-GI engine and the 4-stroke dual fuel engine HIIVSEN. The HIIVSEN GenSet can use both diesel and LNG on LNG carriers and conventional LNG fueled ships. One of the key components for LNG fueled ships is the LNG fuel gas supply system for both dual fuel engine types.

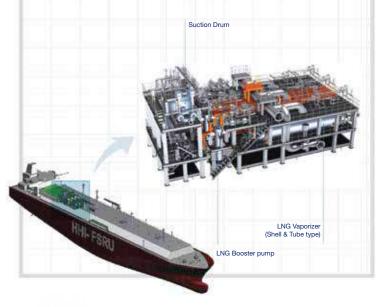
Hi-GAS is a remarkable design of the LNG fuel gas supply system for dual fuel engines based on high and low pressure supply. This means that Hi-GAS can effectively supply high pressure CNG to the ME-GI engine while also supplying low pressure CNG to the 4-stroke DF GenSet, essentially doing the work of two fuel supply systems.

### Application





HHI-EMD can supply complete LNG package solutions for LNG carriers and LNG-fuelled ships.




HHI-EMD can supply complete LNG package solutions for LNG carriers and LNG-fuelled ships.



# **Hí-ReGAS** Hyundai integrated **ReGAS**ification system

Hi-ReGAS system for LNG to vaporize the natural gas aboard the LNG carrier before off-bading into onshore pipelines considering location (land or port not required, shorter overall time to market), delivery (less effective of weather condition), and safety. It is more advantageous to use seawater as the direct heating method to vaporize LNG. This is attractive for energy, space savings, easy operation and fast start-up / shut down.



# Hí-ReGAS

### Suction Drum

Suction Drum is provided for the whole system to play a role of a buffering tank for the LNG Booster Pumps. In order to avoid the wave motion within the Suction Drum due to ship motion, internal baffles are installed and the liquid level is maintained high.

The required discharge pressure of the Cargo Pumps installed in the LNG storage tanks should increase with the operating pressure of the Suction Drum. In consequence, the operating pressure of the Suction Drum is determined as the lowest pressure satisfying the following requirements.



The internal pressure should be greater than the pressure at the cargo tank bottom in order to remove the possibility to generating flashed gas.

The internal pressure should be greater than the NPSH-required of the LNG Booster Pumps with the pressure drop taken into account.

The internal pressure should be high enough for the vent gas from the Suction Drum to reach the Vent Mast.

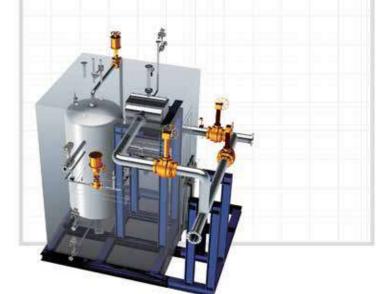
### LNG Booster Pump

One LNG Booster Pump of 1x100% is installed for each Train, which has the rated capacity of 125 MMSCPD at 100 bar head. The pumps are of multi-stage, vertical, submerged, pot mounted type. Due to the significant pressure difference, the density of the LNG is different between the suction and discharge sides.

LNG Booster Pumps run at a constant speed. The discharge flow rate from the pumps is determined from the flow control valve between the pump and the LNG Vaporizer. The pump discharges about 40% of its maximum discharge flow at the minimum export case. In consequence, the recycle valve of the pump is not activated for the capacity control. The recycle valve acts only in the case of start-up, normal shutdown, emergency shutdown, and pump protection.

### LNG Vaporizer

One LNG Vaporizer is installed for each Train to vaporize the pressurized LNG.


The shell & tube type heat exchanger is to heat LNG by sea water. Means shall be provided to detect leakage of high pressure LNG/NG into the heating fluid and to prevent overpressure in the heating system.



# Hi-ERS Hyundai innovative Economical Re-liquefaction System

Hyundai Heavy Industries' Engine & Machinery Division (HHI-EMD) has developed Hi-ERS (Hyundai innovative Economical Re-liquefaction System) that is capable of partially liquefying the boil-off gas (BOG) of LNG carriers by combining the high pressure compressor for ME-GI engines.

Hi-ERS is characterized by simple configuration, robust operation, reliable components, and high safety system satisfying the requirements of customers.



# Hí-ERS

For the purpose of the energy recovery for ERS system, the BOG heat exchanger is installed between the cargo tank and the suction of high pressure compressor.

The temperature of the cold BOG from LNG cargo tank will be approximately between -120°C and -90°C. The pressure of the compressed BOG is approximately 300bar required by ME-GI engine. The cold BOG from the LNG cargo tanks is sufficient to make the compressed BOG cool down for partial re-liquefaction. The flash gas to be vented from the gas separator which is a part of Hi-ERS is passed through the BOG heat exchanger again and transfers its cold heat to the compressed BOG via the BOG heat exchanger to improve the system efficiency of Hi-ERS, and then finally to be sent to other consumers.

If the compressed BOG in its cold state is expanded through the Joule-Thomson valve to a targeted low pressure, then it can be simultaneously decreased to the condensing temperature of BOG by Joule-Thomson effect.

By using Hi-ERS, simple and economical re-liquefaction of BOG can be achieved.

### Main equipment of Hi-ERS









LNG separator

# MONGA Hyundai SER System

### HYUNDAI ENVIRONMENTAL TECHNOLOGIES against IMO NOx Tier III as one of solutions, NoNOx™ SCR (Selective Catalytic Reduction) system

HYUNDAI can offer NoNOX<sup>™</sup> SCR technology that can reduce NOx emissions by 95 %, designed for Tier III limits. HYUNDAI is optimizing the whole installation, performance and engine in order to achieve low cost of production and give benefits to the customers.

### SCR principal

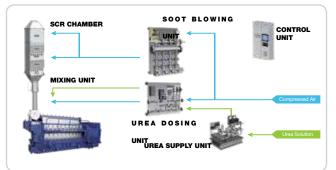
SCR is a well proven technology in the various industries, which can reduce NOx in exhaust gas by a chemical reaction process. Urea solution is commonly adopted as reductant, and it is decomposed into ammonia and carbon dioxide in hot gas stream.

The ammonia decomposed from urea, is chemically re-acted with NOx at the surface of catalyst, which is converted to molecular nitrogen and water.

 $4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O$  $6NO_2 + 8NH_3 \rightarrow 7N_2 + 12H_2O$ 

For proper working of SCR, temperature of flue gas before catalyst is maintained within working range specified. Otherwise, ammonia bisulphate called as ABS can be condensed and accumulated on catalyst, which makes not only decrease of NOx reduction but also damage of catalyst after all. Same risk at all exhaust pipe downstream of SCR system is expected in particular conditions.

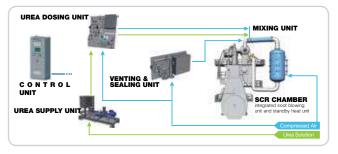
### Certification of NoNOx SCR System


SCR system and relevant certification procedure for marine application is defined by IMO. According to resolution MEPC.198(62), SCR system is considered as an engine component. Therefore, instead of separate certification of SCR system, IMO NOx verification in combination with engine is required according to Scheme A and Scheme B. NoNOX SCR system can be verified and receive IMO NOX Tier III certification at HHI-EMD test-bed according to Scheme A.

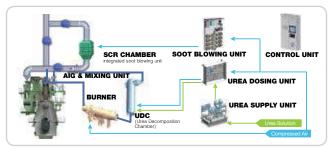
Resolution MEPC. 198(62)



### Main Components of NoNOx SCR System

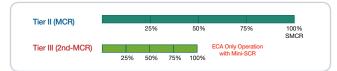

► LP SCR for 4-stroke engine




1 S



### ► HP SCR for 2-stroke engine




### LP SCR for 2-stroke engine



### NoNOx Mini-SCR

NoNOx Mini-SCR technology can offer more compact size and lower cost compared to the original SCR. The Mini-SCR is designed considering essential minimized engine load called 2nd-MCR only for Tier III mode because the engine generally would not run at high load in ECA(Emission Control Area). The engine load will be limited according to operating mode (Tier II or Tier III). Size of the Mini-SCR can decrease approx. 70~85% of original one, hence CAPEX and OPEX can be reduced.





Weight of SCR chamber

Incl. Catalyst[kg]

30.300

35,900

41.000

# HYUNDAI NONOx SCR System

### NoNOx<sup>™</sup> SCR system designed by Hyundai Heavy Industries

NoNOX<sup>™</sup> is brand name of HYUNDAI SCR system, aimed to reduce NOx in exhaust gases. SCR (Selective Catalyst Reduction) is proven technology, which can reduce NOx up to 95% and meet IMO Tier III regulation by itself.

PILC(Pillared Inter-Layered Clay) catalyst, specially designed for marine application is adopted, which makes higher de-NOx efficiency and stronger resistance against thermal stresses comparing to conventional type of catalyst.

The state of the art control System is provided based on ACONIS(Advanced CONtrol & Integration System designed by Hyundai Heavy Industries) hardware platform, which makes full automatic control and perfect interface with other system. Control system can be fully integrated to hull AMS(Alarm Monitoring System) if it were based on ACONIS.

### 4-Stroke SCR(HFO 3.5% S)

2-Stroke HP SCR(MGO 0.1% S)

Engine

power[kW]

~8.340

~16.080

~21.840

~33.500

| Engine    | Dimens | sion of SCR ch | Weight of SCR chamber |                    |
|-----------|--------|----------------|-----------------------|--------------------|
| power[kW] | D[mm]  | W[mm]          | H[mm]                 | Incl. Catalyst[kg] |
| ~850      | 1,100  | 800            | 3,700                 | 2,200              |
| ~1,270    | 1,100  | 1,100          | 3,700                 | 2,600              |
| ~1,700    | 1,400  | 1,100          | 3,900                 | 3,400              |
| ~2,760    | 1,400  | 1,400          | 4,800                 | 4,500              |
| ~4,320    | 1,700  | 1,700          | 5,100                 | 6,200              |
| ~6,220    | 2,100  | 2,100          | 5,400                 | 8,600              |
| ~8,460    | 2,400  | 2,400          | 5,600                 | 10,800             |
| ~11,050   | 2,700  | 2,700          | 5,900                 | 13,400             |
|           |        |                |                       |                    |

Size & Weight of NoNOx<sup>™</sup> standard SCR Chamber

1.940

2.340

2,540

3.040

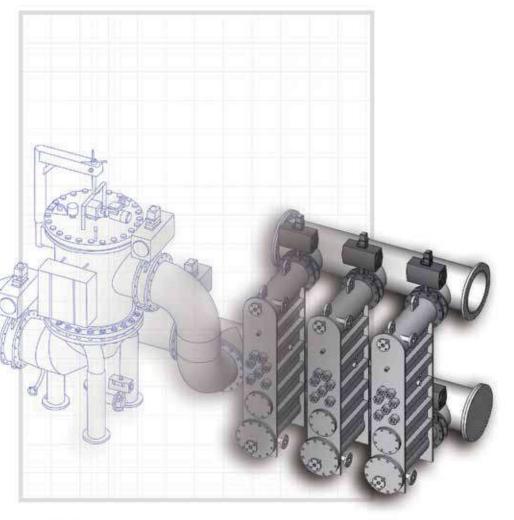
3.240

3,540

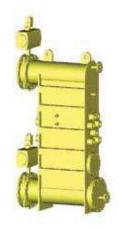
3.840

Dimension of SCR chamber

H[mm]


5.800

5,900


6.700

NoNOx<sup>™</sup> can meet customer's requirement for tailor made of SCR chamber if optimized size of chamber is required, besides standard dimension shown above table. Please contact us for more information.





# **Ballast Water** Treatment System HiBallast & EcoBallast



#### 

# **Ballast Water Treatment System**

# HiBallast

### How HiBallast works?

### HiBallast is a disinfection system by electrolysis of sea water

HiBallast System is composed of three main units; Filter, Electrolysis and a Neutralization unit. The system is controlled by a PLC(programmable logic controller) installed in the control panel. During ballasting operation, filter unit remove particles or organisms larger than  $50\mu$  and disinfectant produced by Electrolysis Unit is injected to the main ballast pipe to kill microorganisms in ballast water

# **EcoBallast**

### How EcoBallast works?

### EcoBallast is a ultra violet disinfection system

EcoBallast is composed of two main units: a filter and a UV reactor. The system is controlled by a programmable logic controller installed in the control panel. The filter significantly reduces the sediment load and removes large organisms in the ballast water.

The UV reactor is specially designed for the ballast water treatment application to maximize the efficiency of the system.









### Introduction

Hyundai intelligent Engine Management Solution, HIEMS, offers a real-time engine status monitoring, troubleshooting guidance to marine engineers and provides connectivity between engines and on shore monitoring center.

With HiEMS, HiMSEN customers can get our experts of engine and service close to you. with intuitive UI, engine operators can figure out the root cause of a certain alarm and get the technical advice and trouble shooting guide.

When detecting the abnormalities in engine, HEIVIS transfers alarm/fault information and sensor data to the onshore monitoring center for the detail analysis.

Also, HIEMS keeps long term data for fleet and engine managements

### **Main features**

### On Ship,

Current Status Monitoring of the HiMSEN engine

- status of sub systems and surveillance with FAT data

Self Trouble Shooting Guidance based on the decision tree

- Decision Tree, Alarm Management, Maintenance Management

Analysis tools for engine data

- Performance, Deviation, Correlation Analysis and Statistics

### On Shore,

Status Monitoring of the Fleet of HiMSEN engines

- Overall status of alarm and running hour
- Long Term Data management and CBM Reporting service

### **Benefits**

On ship, HiEMS provides guidance for the engine operator, self-diagnostic tool with engineering based decision tree and integrated trouble shooting guide, which enables engine operators to run and maintain HiMSEN Engine at optimal condition.

On shore, Ship managers can manage the Reet of HMSEN engines with HIEWS, accessible 2477 through the Monitoring Center of HGS (Hyundai Global Service). Ship managers can get real-time remote diagnostics, qualified advices and services from our engineers and service experts.

Regular CBM reporting service is also available through HGS with HHI.

### **License Policy**

Standard License and Advanced License are available. contact to HHI for further information.

### 🐻 Monitoring

#### Current Status Monitoring of the HiMSEN engine - status of sub systems and surveilance with FAT data



### Fleet managemet

### On Shore, Status Monitoring of the Fleet of HiMSEN engines







### Maintenance

#### Self Trouble Shooting Guidance based on the decision tree - Decision Tree, Alarm Management, Maintenance/Management





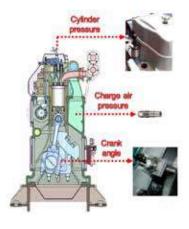


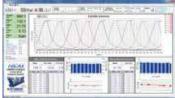
### Analysis tools for engine data

### Performance, Deviation, Correlation Analysis and Statistics







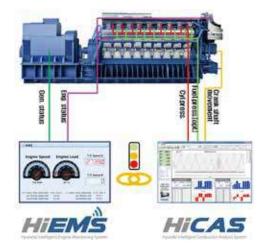


103



### Introduction

The analysis of in-cylinder pressure trace provides an important insight to quantify combustion progress of internal combustion engine. HICAS is an on-line engine indicating system to acquire and process in-cylinder pressure data referenced to crank angle. Once data has been loaded into the analysis software, thermodynamic cycle of engine is analyzed based on cycle-to-cycle and cylinder-to-cylinder.






### Main feature

- In-cylinder peak pressure & IMEP monitoring.
- Oycle-to-cycle variation.
- Cylinder-to-cylinder distribution.
- Fault diagnosis of cyclic moving parts.

To achieve optimum thermodynamic and mechanical engine behavior during entire engine life cycle, HIMSEN engine gives two kinds of on-line monitoring application. This diagnostic

package helps detect engine abnormalities more quickly. And also it will give you more opportunities to save maintenance cost.



# HYUNDAI POWER PLANT

Hyundai Heavy Industries Co., Ltd.

COLUMN ST

STORE OF





Model

H21/32 H21C

H25/33

H32/40 H32/40V 720/750

H27DF

H35DF

H46/60V 600

rpm 900/1000

900/1000

900/1000 H25/33V 900/1000

720/750

900/1000

720/750 H35DFV 720/750

0

H35/40G 720/750 H35/40GV 720/750

| Power Ra | nge              |
|----------|------------------|
| H21/32   | 1,200~1,800 kW   |
| H21C     | 1,200~2,160 kW   |
| H25/33   | 1,740~2,700 kW   |
| H25/33V  | 3,840~6,400 kW   |
| H32/40   | 2,850~4,275 kW   |
| H32/40V  | 5,700~9,500 kW   |
| H35/40G  | 2,880~4,320 kW   |
| H35/40GV | 5,760~9,600 kW   |
| H27DF    | 1,710~2,790 kW   |
| H35DF    | 2,880~4,320 kW   |
| H35DFV   | 5,760~9,600 kW   |
| H46/60V  | 14,400~22,500 kW |

Power Bange

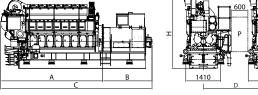
Stationary GenSets

109

HYUNDAI HIMSEN.

### H21/32 I Bore: 210 mm, Stroke: 320 mm

Main Data


| Speed     | 900    | rpm    | 1000 rpm<br>50 Hz |        |  |
|-----------|--------|--------|-------------------|--------|--|
| Frequency | 60     | Hz     |                   |        |  |
|           | Eng.kW | Gen.kW | Eng.kW            | Gen.kW |  |
| 6H21/32   | 1,200  | 1,128  | 1,200             | 1,128  |  |
| 8H21/32   | 1,600  | 1,512  | 1,600             | 1,512  |  |
| 9H21/32   | 1,800  | 1,710  | 1,800             | 1,710  |  |

Based on alternator efficiency of 94~95%.

Specific Lubricating Oil Consumption Lub. Oil: 0.6 g/kWh

### Dimensions

| Speed      | cyl. |       | Dimensi | on (mm) |       | Dry Ma    | iss (ton)    |
|------------|------|-------|---------|---------|-------|-----------|--------------|
| Speed      |      | А     | B 1)    | C 1)    | Н     | Engine 2) | GenSet 1),3) |
| 900 / 1000 | 6    | 3,781 | 2,180   | 5,961   | 2,781 | 15.1      | 25.1         |
| rpm        | 8    | 4,453 | 2,345   | 6,798   | 2,911 | 18.4      | 29.9         |
|            | 9    | 4,783 | 2,423   | 7,206   | 2,911 | 19.8      | 31.9         |



# 1610 11123

### Remarks

1) Depending on alternator. 2) Without common base frame. 3) With common base frame & alternator (Maker: HHI-EES).

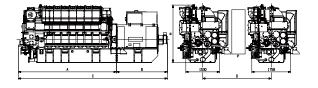
D: Min. distance between engines 2,613 mm (with gallery). P: Free passage between the engines, width 600 mm and height 2,000 mm. Note) All dimensions and weight are approximate value and subject to change without prior notice.



### H21C I Bore: 210 mm, Stroke: 330 mm

Main Data

| Speed     | 900 rpm |        | 1000 rpm |        |  |
|-----------|---------|--------|----------|--------|--|
| Frequency | 60      | Hz     | 50       | Hz     |  |
|           | Eng.kW  | Gen.kW | Eng.kW   | Gen.kW |  |
| 5H21C     | 1,200   | 1,128  | 1,200    | 1,128  |  |
| 6H21C     | 1,440   | 1,353  | 1,440    | 1,353  |  |
| 7H21C     | 1,680   | 1,587  | 1,680    | 1,587  |  |
| 8H21C     | 1,920   | 1,824  | 1,920    | 1,824  |  |
| 9H21C     | 2,160   | 2,052  | 2,160    | 2,052  |  |


Based on alternator efficiency of 94~95 %.

Specific Lubricating Oil Consumption

Lub. Oil: 0.6 g/kWh

### Dimensions

| Speed    | cyl. |       | Dimensi     | on (mm) | (mm) Dry Mass (ton) |           |             |  |  |
|----------|------|-------|-------------|---------|---------------------|-----------|-------------|--|--|
| Speed    |      | А     | <b>B</b> 1) | C 1)    | Н                   | Engine 2) | GenSet 1),3 |  |  |
| 900/1000 | 5    | 3,735 | 2,249       | 5,984   | 2,600               | 14.3      | 22.1        |  |  |
| rpm      | 6    | 4,085 | 2,249       | 6,334   | 2,600               | 16.0      | 24.9        |  |  |
|          | 7    | 4,435 | 2,305       | 6,740   | 2,600               | 17.8      | 28.3        |  |  |
|          | 8    | 4,785 | 2,305       | 7,090   | 2,653               | 19.4      | 30.2        |  |  |
|          | 9    | 5,135 | 2,450       | 7,585   | 2,653               | 21.0      | 33.6        |  |  |



### Remarks

Depending on alternator.
 Without common base frame.
 With common base frame & alternator (Maker: HHI-EES).

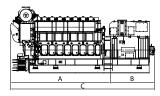
D: Min. distance between engines 2,990 mm (with gallery).
 P: Free passage between the engines, width 600 mm and height 2,000 mm.
 Note) All dimensions and weight are approximate value and subject to change without prior notice.

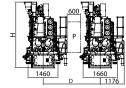


### H25/33 I Bore: 250 mm, Stroke: 330 mm

### Main Data

| Speed                         | 900                               | rpm                               | 1000 rpm<br>50 Hz                 |                                   |  |
|-------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--|
| Frequency                     | 60                                | Hz                                |                                   |                                   |  |
|                               | Eng.kW                            | Gen.kW                            | Eng.kW                            | Gen.kW                            |  |
| 6H25/33                       | 1,740                             | 1,653                             | 1,800                             | 1,710                             |  |
| 7H25/33                       | 2,030                             | 1,928                             | 2,100                             | 1,995                             |  |
| 8H25/33                       | 2,320                             | 2,215                             | 2,400                             | 2,292                             |  |
| 9H25/33                       | 2,610                             | 2,505                             | 2,700                             | 2,592                             |  |
| 6H25/33<br>7H25/33<br>8H25/33 | Eng.kW<br>1,740<br>2,030<br>2,320 | Gen.kW<br>1,653<br>1,928<br>2,215 | Eng.kW<br>1,800<br>2,100<br>2,400 | Gen.kW<br>1,710<br>1,995<br>2,292 |  |


Based on alternator efficiency of 95~96 %.


### Specific Lubricating Oil Consumption

Lub. Oil: 0.6 g/kWh

### Dimensions

|  | Speed    | cyl. |       | Dimensi | on (mm) |       | Dry Mass (to |              |  |
|--|----------|------|-------|---------|---------|-------|--------------|--------------|--|
|  | Speed    |      | А     | B 1)    | C 1)    | Н     | Engine 2)    | GenSet 1),3) |  |
|  | 900/1000 | 6    | 4,414 | 2,262   | 6,676   | 2,961 | 20.2         | 30.2         |  |
|  | rpm      | 7    | 4,797 | 2,262   | 7,059   | 3,241 | 22.5         | 32.7         |  |
|  |          | 8    | 5,311 | 2,340   | 7,651   | 3,371 | 24.1         | 34.9         |  |
|  |          | 9    | 5,691 | 2,490   | 8,181   | 3,371 | 26.2         | 37.2         |  |





### Remarks

Depending on alternator.
 Without common base frame.
 With common base frame & alternator (Maker: HHI-EES).

D: Min. distance between engines 2,844 mm (with gallery).
 P: Free passage between the engines, width 600 mm and height 2,000 mm.
 Note) All dimensions and weight are approximate value and subject to change without prior notice.

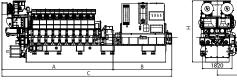


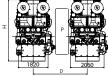
Engine & Machinery Division

### H25/33V I Bore: 250 mm, Stroke: 330 mm

Main Data

| Speed     | 900 rpm |        | 1000 rpm |        |  |
|-----------|---------|--------|----------|--------|--|
| Frequency | 60      | Hz     | 50       | Hz     |  |
|           | Eng.kW  | Gen.kW | Eng.kW   | Gen.kW |  |
| 12H25/33V | 3,840   | 3,686  | 3,840    | 3,686  |  |
| 14H25/33V | 4,480   | 4,300  | 4,480    | 4,300  |  |
| 16H25/33V | 5,120   | 4,915  | 5,120    | 4,915  |  |
| 18H25/33V | 5,760   | 5,558  | 5,760    | 5,558  |  |
| 20H25/33V | 6,400   | 6,208  | 6,400    | 6,208  |  |


Based on alternator efficiency of 96~97 %.


Specific Lubricating Oil Consumption

Lub. Oil: 0.6 g/kWh

### Dimensions

| Speed    | cyl. |       | Dry Mass (ton) |           |              |      |      |
|----------|------|-------|----------------|-----------|--------------|------|------|
| Speeu    |      | А     | B 1)           | Engine 2) | GenSet 1),3) |      |      |
| 900/1000 | 12   | 5,524 | 3,334          | 8,858     | 3,750        | 33.5 | 58.2 |
| rpm      | 14   | 5,944 | 3,504          | 9,448     | 3,750        | 36.5 | 63.4 |
|          | 16   | 6,364 | 3,682          | 10,046    | 3,750        | 39.5 | 69.6 |
|          | 18   | 6,784 | 3,772          | 10,556    | 3,750        | 42.5 | 77.5 |
|          | 20   | 7,204 | 3,727          | 10,931    | 3,750        | 45.5 | 79.5 |





### Remarks

1) Depending on alternator.

2) Without common base frame.

3) With common base frame & alternator (Maker: HHI-EES).

D: Min. distance between engines 3,840 mm (with gallery).
 P: Free passage between the engines, width 600 mm and height 2,000 mm.
 Note) All dimensions and weight are approximate value and subject to change without prior notice.

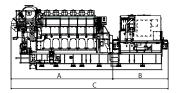


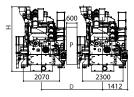
### H32/40 I Bore: 320 mm, Stroke: 400 mm

### Main Data

| Speed     | 720    | rpm    | 750 rpm |        |  |
|-----------|--------|--------|---------|--------|--|
| Frequency | 60     | Hz     | 50      | Hz     |  |
|           | Eng.kW | Gen.kW | Eng.kW  | Gen.kW |  |
| 6H32/40   | 2,850  | 2,736  | 2,850   | 2,736  |  |
| 7H32/40   | 3,325  | 3,192  | 3,325   | 3,192  |  |
| 8H32/40   | 3,800  | 3,648  | 3,800   | 3,648  |  |
| 9H32/40   | 4,275  | 4,104  | 4,275   | 4,104  |  |

1) Based on alternator efficiency of 96 %.


2) In case of diesel oil (Distillate Fuels ISO 8217 DM Grade) operation continuously, 500 kW/cyl, is available.


### Specific Lubricating Oil Consumption

Lub. Oil: 0.5 g/kWh

### Dimensions

|  | Speed     | cyl. |       | Dimensi |        | Dry Mass (ton) |           |             |
|--|-----------|------|-------|---------|--------|----------------|-----------|-------------|
|  | Speed     |      | А     | B 1)    | C 1)   | Н              | Engine 2) | GenSet 1),3 |
|  |           | 6    | 5,760 | 3,130   | 8,890  | 3,959          | 33.7      | 68.6        |
|  | 720 / 750 | 7    | 6,112 | 3,374   | 9,486  | 4,130          | 38.6      | 77.1        |
|  | rpm       | 8    | 6,602 | 3,594   | 10,196 | 4,130          | 41.5      | 82.0        |
|  |           | 9    | 7,092 | 4,097   | 11,189 | 4,130          | 44.6      | 89.1        |





### Remarks

- 1) Depending on alternator.
- 2) Without common base frame.
- 3) With common base frame & alternator (Maker: HHI-EES).

D: Min. distance between engines 3,408 mm (with gallery).

P: Free passage between the engines, width 600 mm and height 2,000 mm. Note) All dimensions and weight are approximate value and subject to change without prior notice.

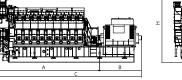


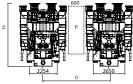
### H32/40V I Bore: 320 mm, Stroke: 400 mm

### Main Data

| Speed     | 720    | 720 rpm |        | rpm    |
|-----------|--------|---------|--------|--------|
| Frequency | 60     | Hz      | 50     | Hz     |
|           | Eng.kW | Gen.kW  | Eng.kW | Gen.kW |
| 12H32/40V | 5,700  | 5,500   | 5,700  | 5,500  |
| 14H32/40V | 6,650  | 6,450   | 6,650  | 6,450  |
| 16H32/40V | 7,600  | 7,372   | 7,600  | 7,372  |
| 18H32/40V | 8,550  | 8,293   | 8,550  | 8,293  |
| 20H32/40V | 9,500  | 9,262   | 9,500  | 9,262  |

1) Based on alternator efficiency of 96.5~97.5 %.


2) In case of diesel oil (Distillate Fuels ISO 8217 DM Grade) operation continuously, 500 kW/cyl, is available.


### Specific Lubricating Oil Consumption

Lub. Oil: 0.5 g/kWh

### Dimensions

| Speed            | cyl. |       | Dimensi |        | Dry Mass (ton) |           |              |
|------------------|------|-------|---------|--------|----------------|-----------|--------------|
| Speed            |      | А     | B 1)    | C 1)   | Н              | Engine 2) | GenSet 1),3) |
|                  | 12   | 6,624 | 3,760   | 10,384 | 4,723          | 56.0      | 108.8        |
|                  | 14   | 7,295 | 3,860   | 11,155 | 4,723          | 63.3      | 121.3        |
| 720 / 750<br>rpm | 16   | 7,914 | 3,479   | 11,393 | 4,723          | 69.1      | 130.9        |
| ipin             | 18   | 8,585 | 3,859   | 12,444 | 4,794          | 76.3      | 141.2        |
|                  | 20   | 9,344 | 3,659   | 13,003 | 4,794          | 84.0      | 153.9        |





### Remarks

Depending on alternator.
 Without common base frame.
 With common base frame & alternator (Maker: HHI-EES).

D: Min. distance between engines 4,405 mm (with gallery).
 P: Free passage between the engines, width 600 mm and height 2,000 mm.
 Note) All dimensions and weight are approximate value and subject to change without prior notice.

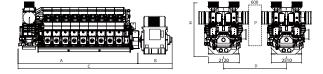


### H46/60V I Bore: 460 mm, Stroke: 600 mm

### Main Data

| Speed     | 600    | rpm    | 600    | 600 rpm |  |  |
|-----------|--------|--------|--------|---------|--|--|
| Frequency | 60     | Hz     | 50 Hz  |         |  |  |
|           | Eng.kW | Gen.kW | Eng.kW | Gen.kW  |  |  |
| 12H46/60V | 14,400 | 14,040 | 14,400 | 14,040  |  |  |
| 16H46/60V | 19,200 | 18,720 | 19,200 | 18,720  |  |  |
| 18H46/60V | 21,610 | 21,060 | 21,600 | 21,060  |  |  |

1) Based on alternator efficiency of 97.5 %.


2) In case of diesel oil(Distillate Fuels ISO8217 DM Grade) operation continuously, 1,200 kW/cyl. Is available.

### Specific Lubricating Oil Consumption

Lub. Oil: 0.6 g/kWh

### Dimensions

| Croad            | cyl.       |                    | Dimens               | ion (mm)         |            | Dry Ma              | iss (ton)             |
|------------------|------------|--------------------|----------------------|------------------|------------|---------------------|-----------------------|
| Speed            |            | А                  | B 1)                 | C 1)             | Н          | Engine 2)           | GenSet 1),2)          |
| 600 rpm          | 12         | 10,410             | 3,627                | 14,037           | 4,975      | 205.3               | 256.4                 |
| (60 Hz)          | 16         | 12,410             | 3,724                | 16,134           | 4,975      | 227.8               | 286.6                 |
|                  | 18         | 13,410             | 3,625                | 17,035           | 5,288      | 239.0               | 313                   |
|                  |            |                    |                      |                  |            |                     |                       |
|                  |            |                    |                      |                  |            |                     |                       |
| Owned            | cyl.       |                    | Dimens               | ion (mm)         |            | Dry Ma              | ıss (ton)             |
| Speed            | cyl.       | А                  | Dimens<br>B 1)       | ION (MM)<br>C 1) | Н          | Dry Ma<br>Engine 2) | GenSet 1),2)          |
| Speed<br>600 rpm | cyl.<br>12 | <b>A</b><br>10,410 |                      | · · · ·          | H<br>4,975 |                     | · · ·                 |
|                  | , i        |                    | <b>B</b> 1)          | C 1)             |            | Engine 2)           | GenSet 1),2)          |
| 600 rpm          | 12         | 10,410             | <b>В</b> 1)<br>3,474 | C 1)<br>13,884   | 4,975      | Engine 2)<br>205.3  | GenSet 1),2)<br>256.2 |



123

Engine & Machinery Division

### Remarks

Depending on alternator.
 Without common base frame.

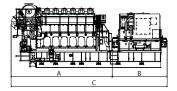
D : Min. distance between engines 6,000 mm (with gallery) P : Min. Turbo Charger distance : Min. 215mm. (Recommand 500 mm) Note) All dimensions and weight are approximate value

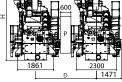


### H35/40G I Bore: 350 mm, Stroke: 400 mm

### Main Data

| Speed     | 720    | 720 rpm |        | rpm    |  |
|-----------|--------|---------|--------|--------|--|
| Frequency | 60     | Hz      | 50 Hz  |        |  |
|           | Eng.kW | Gen.kW  | Eng.kW | Gen.kW |  |
| 6H35/40G  | 2,880  | 2,764   | 2,880  | 2,764  |  |
| 7H35/40G  | 3,360  | 3,225   | 3,360  | 3,225  |  |
| 8H35/40G  | 3,840  | 3,686   | 3,840  | 3,686  |  |
| 9H35/40G  | 4,320  | 4,147   | 4,320  | 4,147  |  |
|           |        |         |        |        |  |


Based on alternator efficiency of 96 %.


### Specific Lubricating Oil Consumption

Lub. Oil: 0.4 g/kWh

### Dimensions

| Owned   | cyl. |       | Dimension (mm) |          |       |             | Dry Mass (ton) |  |
|---------|------|-------|----------------|----------|-------|-------------|----------------|--|
| Speed   |      | А     | B 1)           | C 1)     | Н     | Engine 2)   | GenSet 1),3)   |  |
| 720 rpm | 6    | 5,760 | 3,130          | 8,890    | 3,959 | 33.7        | 68.6           |  |
|         | 7    | 6,112 | 3,374          | 9,486    | 4,130 | 38.6        | 77.1           |  |
|         | 8    | 6,602 | 3,594          | 10,196   | 4,130 | 41.5        | 82.0           |  |
|         | 9    | 7,092 | 4,097          | 11,189   | 4,130 | 44.6        | 89.1           |  |
|         |      |       |                |          |       | <b>D</b> 14 | (1)            |  |
| Speed   | cyl. |       | Dimensi        | ion (mm) |       | Dry Ma      | ıss (ton)      |  |
| opeeu   |      | А     | <b>B</b> 1)    | C 1)     | Н     | Engine 2)   | GenSet 1),3)   |  |
| 750 rpm | 6    | 5,760 | 3,130          | 8,890    | 3,959 | 33.7        | 68.6           |  |
|         | 7    | 6,112 | 3,374          | 9,486    | 4,130 | 38.6        | 77.1           |  |
|         | 8    | 6,602 | 3,594          | 10,196   | 4,130 | 41.5        | 82.0           |  |
|         |      |       |                |          |       |             |                |  |





### Remarks

- 1) Depending on alternator.
- 2) Without common base frame.
- 3) With common base frame & alternator (Maker: HHI-EES).

D: Min. distance between engines 3,037 mm (with gallery). P: Free passage between the engines, width 600 mm and height 2,000 mm. Note) All dimensions and weight are approximate value and subject to change without prior notice.

125



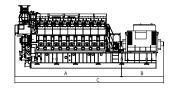
**GAS Engine** 

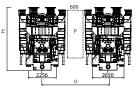


### H35/40GV I Bore: 350 mm, Stroke: 400 mm

### Main Data

| Speed      | 720    | rpm    | 750 rpm |        |  |
|------------|--------|--------|---------|--------|--|
| Frequency  | 60     | Hz     | 50      | Hz     |  |
|            | Eng.kW | Gen.kW | Eng.kW  | Gen.kW |  |
| 12H35/40GV | 5,760  | 5,558  | 5,760   | 5,558  |  |
| 14H35/40GV | 6,720  | 6,518  | 6,720   | 6,518  |  |
| 16H35/40GV | 7,680  | 7,449  | 7,680   | 7,449  |  |
| 18H35/40GV | 8,640  | 8,380  | 8,640   | 8,380  |  |
| 20H35/40GV | 9,600  | 9,360  | 9,600   | 9,360  |  |
|            |        |        |         |        |  |


Based on alternator efficiency of 96.5~97.5 %.


### Specific Lubricating Oil Consumption

Lub. Oil: 0.4 g/kWh

### Dimensions

| Created          | cyl.           |                         | Dimens                          | ion (mm)                            |                         | Dry Ma                           | iss (ton)                              |
|------------------|----------------|-------------------------|---------------------------------|-------------------------------------|-------------------------|----------------------------------|----------------------------------------|
| Speed            |                | А                       | B 1)                            | C 1)                                | Н                       | Engine 2)                        | GenSet 1),3)                           |
| 720 rpm          | 12             | 6,624                   | 3,760                           | 10,384                              | 4,723                   | 56.0                             | 108.8                                  |
|                  | 14             | 7,295                   | 3,860                           | 11,155                              | 4,723                   | 63.3                             | 121.3                                  |
|                  | 16             | 7,914                   | 3,479                           | 11,393                              | 4,723                   | 69.1                             | 130.9                                  |
|                  | 18             | 8,585                   | 3,859                           | 12,444                              | 4,794                   | 76.3                             | 141.2                                  |
|                  | 20             | 9,344                   | 3,659                           | 13,003                              | 4,794                   | 84.0                             | 153.9                                  |
|                  | a. d           |                         |                                 |                                     |                         |                                  |                                        |
|                  |                |                         |                                 |                                     |                         |                                  | icc (top)                              |
| Speed            | cyl.           | А                       | Dimensi<br>B 1)                 | Ion (mm)<br>C 1)                    | Н                       | Dry Ma<br>Engine 2               | ISS (ton)<br>GenSet 1).3)              |
| Speed<br>750 rpm | суі.<br>12     | A<br>6,624              |                                 |                                     | H<br>4,723              |                                  | · · ·                                  |
|                  | ĺ.             |                         | B 1)                            | C 1)                                |                         | Engine 2)                        | GenSet 1),3)                           |
|                  | 12             | 6,624                   | B 1)<br>3,760                   | C 1)<br>10,384                      | 4,723                   | Engine 2)<br>56.0                | GenSet 1),3)<br>108.8                  |
|                  | 12<br>14       | 6,624<br>7,295          | B 1)<br>3,760<br>3,860          | C <sub>1)</sub><br>10,384<br>11,155 | 4,723<br>4,723          | Engine 2)<br>56.0<br>63.3        | GenSet 1),3)<br>108.8<br>121.3         |
|                  | 12<br>14<br>16 | 6,624<br>7,295<br>7,914 | B 1)<br>3,760<br>3,860<br>3,479 | C 1)<br>10,384<br>11,155<br>11,393  | 4,723<br>4,723<br>4,723 | Engine ₂<br>56.0<br>63.3<br>69.1 | GenSet 1,3)<br>108.8<br>121.3<br>130.9 |





### Remarks

- 1) Depending on alternator.
- 2) Without common base frame.
- 3) With common base frame & alternator (Maker: HHI-EES).
- D: Min. distance between engines 4,405 mm (with gallery).
- P: Free passage between the engines, width 600 mm and height 2,000 mm. Note) All dimensions and weight are approximate value and subject to change without prior notice.

Stationary GenSets

127

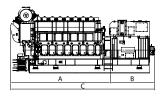
**GAS Engine** 

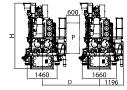


### H27DF I Bore: 270 mm, Stroke: 330 mm

| ain |  |  |
|-----|--|--|
|     |  |  |

| Speed     | 900    | rpm    | 1000 rpm |        |  |
|-----------|--------|--------|----------|--------|--|
| Frequency | 60     | Hz     | 50       | Hz     |  |
|           | Eng.kW | Gen.kW | Eng.kW   | Gen.kW |  |
| 6H27DF    | 1,710  | 1,624  | 1,860    | 1,767  |  |
| 7H27DF    | 1,995  | 1,895  | 2,170    | 2,061  |  |
| 8H27DF    | 2,280  | 2,177  | 2,480    | 2,368  |  |
| 9H27DF    | 2,565  | 2,462  | 2,790    | 2,678  |  |
|           |        |        |          |        |  |


Based on alternator efficiency of 95~96 %.


### Specific Lubricating Oil Consumption

Lub. Oil: 0.6 g/kWh

### Dimensions

| 0 |          | cyl. |       | Dimensi | on (mm) |       | Dry Ma    | iss (ton)   |
|---|----------|------|-------|---------|---------|-------|-----------|-------------|
|   | Speed    |      | А     | B 1)    | C 1)    | Н     | Engine 2) | GenSet 1),3 |
|   | 900/1000 | 6    | 4,414 | 2,262   | 6,676   | 3,103 | 23.5      | 33.7        |
|   | rpm      | 7    | 4,797 | 2,262   | 7,059   | 3,241 | 27.7      | 37.7        |
|   |          | 8    | 5,311 | 2,340   | 7,651   | 3,371 | 34.0      | 44.8        |
|   |          | 9    | 5,691 | 2,490   | 8,181   | 3,371 | 36.2      | 47.2        |





### Remarks

Depending on alternator.
 Without common base frame.
 With common base frame & alternator (Maker: HHI-EES).

D: Min. distance between engines 2,844 mm (with gallery).
 P: Free passage between the engines, width 600 mm and height 2,000 mm.
 Note) All dimensions and weight are approximate value and subject to change without prior notice.

129

**Dual Fuel Engine** 



### H35DF I Bore: 350 mm, Stroke: 400 mm

### Main Data

| Speed     | 720    | 720 rpm |        | rpm    |
|-----------|--------|---------|--------|--------|
| Frequency | 60     | Hz      | 50     | Hz     |
|           | Eng.kW | Gen.kW  | Eng.kW | Gen.kW |
| 6H35DF    | 2,880  | 2,764   | 2,880  | 2,764  |
| 7H35DF    | 3,360  | 3,225   | 3,360  | 3,225  |
| 8H35DF    | 3,840  | 3,686   | 3,840  | 3,686  |
| 9H35DF    | 4,320  | 4,147   | 4,320  | 4,147  |
|           |        |         |        |        |

Based on alternator efficiency of 96 %.

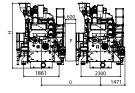
### Specific Lubricating Oil Consumption

Lub. Oil: 0.4 g/kWh

HYUNDAI

HIMSEN.

#### Dimensions Dry Mass (ton) cyl. Dimension (mm) Speed C 1) Engine 2) GenSet 1),3) Α B 1) н 6 5,760 3,130 8,890 4,367 34.7 69.6 720 rpm 7 6,112 3,374 9,486 4,538 39.6 78.1 8 6.602 3.594 10.196 4.538 42.5 83.0 9 7.092 4.097 11.189 4.538 45.6 90.1 cyl. Dimension (mm) Dry Mass (ton) Speed Α C 1) н Engine 2) GenSet 1).3) B 1) 3.130 8.890 34.7 750 rpm 6 5.760 4.367 69.6 7 6.112 3.374 9.486 4.538 39.6 78.1 4,538 8 6,602 3,594 10,196 42.5 83.0


11,189

4,538

7,092

4,097

9



45.6

### Remarks

Depending on alternator.
 Weight included a standard alternator (Maker : HHI-EES)
 With Common base frame

D: Min distance between engines : 3,408 mm (with gallery).
 P: Free passage between the engines : 600 mm x 2,000 mm.
 Note) All dimensions and weight are approximate value and subject to change without prior notice.

### **Dual Fuel Engine**



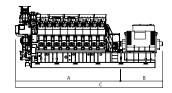
90.1

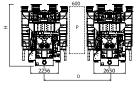
Engine & Machinery Division

### H35DFV I Bore: 350 mm, Stroke: 400 mm

### Main Data

| Speed     | 720 rpm |        | 750 rpm |        |
|-----------|---------|--------|---------|--------|
| Frequency | 60 Hz   |        | 50 Hz   |        |
|           | Eng.kW  | Gen.kW | Eng.kW  | Gen.kW |
| 12H35DFV  | 5,760   | 5,558  | 5,760   | 5,558  |
| 14H35DFV  | 6,720   | 6,518  | 6,720   | 6,518  |
| 16H35DFV  | 7,680   | 7,449  | 7,680   | 7,449  |
| 18H35DFV  | 8,640   | 8,380  | 8,640   | 8,380  |
| 20H35DFV  | 9,600   | 9,360  | 9,600   | 9,360  |


Based on alternator efficiency of 96.5~97.5 %.


### Specific Lubricating Oil Consumption

Lub. Oil: 0.4 g/kWh

### Dimensions

| Speed   | cyl. | Dimension (mm) |       |        | Dry Mass (ton) |           |              |
|---------|------|----------------|-------|--------|----------------|-----------|--------------|
| Speed   |      | А              | B 1)  | C 1)   | Н              | Engine 2) | GenSet 1),3) |
| 720 rpm | 12   | 6,624          | 3,760 | 10,384 | 4,723          | 58.0      | 110.8        |
|         | 14   | 7,295          | 3,860 | 11,155 | 4,723          | 65.3      | 123.3        |
|         | 16   | 7,914          | 3,479 | 11,393 | 4,723          | 71.1      | 132.9        |
|         | 18   | 8,585          | 3,859 | 12,444 | 4,794          | 78.3      | 143.2        |
|         | 20   | 9,344          | 3,659 | 13,003 | 4,794          | 86.0      | 155.9        |
| cyl.    |      | Dimension (mm) |       |        | Dry Mass (ton) |           |              |
| Speed   |      | А              | B 1)  | C 1)   | Н              | Engine 2) | GenSet 1),3) |
| 750 rpm | 12   | 6,624          | 3,760 | 10,384 | 4,723          | 58.0      | 110.8        |
|         | 14   | 7,295          | 3,860 | 11,155 | 4,723          | 65.3      | 123.3        |
|         | 16   | 7,914          | 3,479 | 11,393 | 4,723          | 71.1      | 132.9        |
|         | 18   | 8,585          | 3,859 | 12,444 | 4,794          | 78.3      | 143.2        |
|         | 20   | 9.344          | 3.659 | 13.003 | 4.794          | 86.0      | 155.9        |





### Remarks

Depending on alternator.
 Without common base frame.

3) With common base frame & alternator (Maker: HHI-EES).

D: Min. distance between engines 4,405 mm (with gallery).

P: Free passage between the engines, width 600 mm and height 2,000 mm. Note) All dimensions and weight are approximate value and subject to change without prior notice.

**Dual Fuel Engine** 



# **Packaged Power Station**

### Santa-Elena

Santa-Elena 90 MW PPS in Ecuador (HYUNDAI - HiMSEN 9H21/32 x 53 Sets)



### **General Specifications**

| Engine Model                        | 6H21/32                     | 8H21/32         | 9H21/32      |
|-------------------------------------|-----------------------------|-----------------|--------------|
| Engine (kW)                         | 1,200                       | 1,600           | 1,800        |
| Generator (kW)                      | 1,128                       | 1,512           | 1,710        |
| Total Weight (ton)                  | 42                          | 48              | 50           |
| Dimension (W $\times$ H $\times$ L) | 2.4 m × 3.4                 | 4 m × 12 m (Con | tainer Size) |
| Cooling Method                      | Radiator / Cooling Tower    |                 |              |
| Speed                               | 900 rpm / 1,000 rpm         |                 |              |
| Fuel                                | Diesel oil / Heavy fuel oil |                 |              |

### Features

- Base load operation
- Diesel oil / Heavy fuel oil - Compact 40-feet container size
- Mobile type (option)
- Environmentally comfortable
- Low cost of operating and maintenance
- Low cost of operating and mi

### Application

- Captive power
- Construction site
- Isolated area
- Rental business

12 - -

- Pumping station
- Independent power producer

6

Engine
 Generator
 Control panel
 Enclosure

6 Radiator6 Exhaust gas silencer

Ventilation air exhaust fan



# **HiMSEN Engine for Pump Station**

### **Earth-Friendly Engine**

### **Design Philosophy**

Hyundai's HiMSEN Family has simple and smart design suitable for pumping applications with high reliability and performance. HHI Engines can run on liquid fuel such as Heavy Fuel Oil (HFO) and Diesel Oil (DO) or natural gas. The key features are:

### **Economical and Ecological Engine**

It is designed with low fuel consumption, NOx emission, and Smoke, etc. which is based on the following specific designs:

- Optimized Supercharging with Miller Cycle
- High Fuel Injection Pressure

### **Reliable and Practical Engine**

It is designed with simple, smart and robust structure.

- Number of engine components are minimized with Pipe-Free design.
- Most of the components are directly accessible for easier maintenance.
- · Feed System is fully modularized with direct access.



### Main Features

Performance characteristics - Higher output in the similar range engines - Low fuel consumption - Quick acceleration & load response

### Maintenance

- Easier maintenance through modularized design - Minimal number of components

### Earth-friendly engine

- Low NOx emissions - Complies with IMO NOx Tier II - Low Vibration & Noise



# **Quality Management**

### Approval Status of Quality Management System

| - pp: oral oral and or a data of indiana gottom of orong                                                                                                                                                                                                                                                                                                                                                                          |                   |                                                                                                                  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------|--|--|
| Product or Service Ranges                                                                                                                                                                                                                                                                                                                                                                                                         |                   | Certifying Agency                                                                                                |  |  |
| Design and Manufacture of Two & Four-<br>Stroke Marine and Stationary Diesel & Gas<br>Engine and Engine Power with Components<br>(Turbochargers, Blocks,<br>Crankshafts, Cylinder Liners, Propellers,<br>Forged Steel and Shafting etc.),<br>Marine and Industrial Equipment,<br>BWTS, SCR, Hydraulic Machinery<br>(Pumps, Valves, Compressors, Steam<br>& Gas Turbines, etc.), Industrial<br>Machinery (Conveyors, Presses etc.) |                   | DNV-GL<br>• ISO 9001:2008<br>KS Q ISO 9001:2009<br>• ISO 14001:2004<br>KS IISO 14:001:2009<br>• OHSAS 18001:2007 |  |  |
| Nuclear Diesel Generator (C<br>Pump (Class 2, 3)                                                                                                                                                                                                                                                                                                                                                                                  | Class 1E),        | KEPIC-MIVEN                                                                                                      |  |  |
| Forging Shop                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | ABS, BV, CCS, DNV·GL, KR, LR,<br>NK, RINA                                                                        |  |  |
| Casting Shop                                                                                                                                                                                                                                                                                                                                                                                                                      | Works<br>Approval | ABS, BV, CCS, DNV·GL, KR, LR,<br>RINA                                                                            |  |  |
| Propeller                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | ABS, BV, CCS, DNV·GL, KR, LR,<br>NK, RINA, RS                                                                    |  |  |
| Crankshaft                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | ABS, BV, CCS, DNV·GL, KR, LR,<br>NK, RINA                                                                        |  |  |
| The Classification Approval of<br>Quality Assurance System                                                                                                                                                                                                                                                                                                                                                                        |                   | DNV-GL-MSA, KR-QAS, LR-QAM                                                                                       |  |  |

3

### Global Network Hyundai Global Service Co., Ltd

# Total Solution Provider, One Stop Service

### Hyundai Global Service Co.,Ltd

HHI is set to embark on a new journey by setting up an integrated A/S unit to fulfill for shipbuilding, engine and marine electric products.

The new entity named "Hyundai Global Service Co.,Ltd" is launched in Dec. 2016. also offer technical support to maintain and improve the vessel performance based data.

Moreover, the company seeks to establish a prompt A/S system and deliver ecohamessing state-of-the-art ICT, to encourage our clients to come back for In particular, Hyundai Global Service will leverage on the proprietary supply chain of company so it can provide one-stop services and total solutions. By launching the new entity, the right of service business including global service network of Industries Co.,Ltd (HHI)s is authorized to Hyundai Global Service Co.,Ltd (HGS)

# **Hi-Service**

### Engine Hi-service system setup

Our target is to provide quickest and most precious technical support and parts supply towards the customers.

We do utmost to minimize the trouble and inconvenience from the ship owners which might be occurred due to the damage caused by the accident.

### Easy Access to Hyundai Global Service

Regardless of the guarantee period whether it is over or not, Hyundai Global Service (HGS) will make it a rule to support the clients with immediate service in the order of the receipt by e-mail or through homepage. But, considering its seriousness of the damage or the schedule of the vessel, the provision timing of our technical support including repair may be adjusted.

### Genuine Spare Parts Purchase Guide

HGS's authorized sales agents will supply the clients with the original genuine spare parts at the competitive condition in aspect of price, delivery time and quality etc. Please do not hesitate to contact our sales agent with the inquiry or questionnaire.

### **Technical Support**

After the guarantee period is expired or in case that the free support is limited even during the guarantee period due to special reason, we also provide the technical support including supervision, reconditioning, conversion, retrofit of alpha cylinder lubricator and technical consultancy etc.

### **Global Service Network**

HGS is very proud of its well organized global service network which is efficiently and systematically designed to meet every requirement of the clients. HGS's direct service centers are established at Rotterdam, Singapore, Dubai, Athens and Houston in U.S.A.



# Head Quarter of Hyundai Global Service

### Hyundai Global Service Co., Ltd.

Centum Science Park, 79, Centum Juangangro, Haeundae-gu, Busan, 48058, Korea +82 52 204 7600 (Hotiine. +82 70 8670 1122) service@hyundai-gs.com / sales@hyundai-gs.com

### Warranty Service

TEL: (82) 52-204-7760 (2-stroke Marine) (82) 52-204-7887 (4-stroke Marine) (82) 52-204-7742 (Stationary) FAX: (82) 52-204-7801 E-mail: service@hyundai-gs.com

### Parts Sales

TEL: (82) 52-204-7718 (2-stroke and 4-stroke Marine) (82) 52-204-7742 (Stationary) FAX: (82) 52-204-7700 E-mail: sales@hyundai-gs.com

### **Call Center**

TEL: (82) 70 8670 1122

### Hyundai Global Service EuropeB.V.

Schorpioenstraat 69, 3067 GG, Rotterdam, The Netherlands Phone: +31 10 212 1567 (Fax. +31 10 212 5134) E-mail: spares@hhi.co.kr

### Hyundai Global Service Americas Co., Ltd.

7206 Harms Road Houston, TX 77041, United States Phone: +1 281 578 7097 E-mail: sales.us@hyundai-gs.com

### Hyundai Global Service Singapore Pte. Ltd

5 Temasek Boulevard #04-02 Suntec Tower Five, Singapore, 038985 Phone: +65 6 337 2366 E-mail: sales.sg@hyundai-gs.com

### **Branch Office**

### Hamburg (Germany)

4th Floor, Ecos Office Center Hamburg, Glockengießerwall, Hamburg, Germany Phone: +49 17 1568 661 E-mail: daehyunkim@hyundai-gs.com

### Athens (Greece)

73, Poseidonos Avenue, 175 62, Paleo Faliro, Athens, Greece Phone: +30 210 428 2993 E-mail: donghwankim@hyundai-gs.com

### Dubai (UAE)

Level 2, Unit 205, Emaar Square Blvd. 4, Sheikh Zayed Road, P.O. Box 252458, Dubai, U.A.E **Phone:** +971 4 425 7995 (Fax. +971 4 425 7996) **E-mail:** jihunsung@hyundai-gs.com





Authorized Repairer

### Korea DSK

### Country Code: +82

24 Namhangnam-ro, Yeongdo-Gu, Busan, Korea Jong-Seok, Hwang, President Phone: +82 51 417 7800

F-mail: dsk@dskworld.com

### Sunwoo Engineering

94-3, 33 beon-ail, Gonahang Ap-ail, Ganaseo-au, Busan, Korea, Jong-Gil, Jeong, President. Phone: +82 51 558 7333 E-mail: sunwooeng@gmail.com

### MTS

28. Yeondeok-ro 27 beon-ail, Seonasan-au, Chanawon-Si Gyeongsangnam-Do, Korea Byung-Ho, Eom, President Phone: +82 55 274 0411 E-mail: mts@martech.co.kr

Ocean Tech Engineering Co., Ltd. 12. Namhangnam-ro 31 beon-gil, Yeongdo-gu, Busan, Korea, Do-Hwan, Kim, President Phone: +82 51 415 5030 E-mail: oceantecheng@oceantecheng.co.kr

Metro ENG Co., Ltd. 71, Nakdongnam-ro, 622beon-gil, Gangseo-gu, Busan, Korea Jona-Uk, Kim, President Phone: +82 51 412 0144 E-mail: joukkim@metroeng.co.kr O-Sung Entec Co., Ltd. 23, 65, Haeyang-ro, Yeongdo-gu, Busan, Korea. Chang-Bae, Kim, President Phone: +82 51 442 2913 F-mail: osentec@hanmail net

\*Cooperative repairer : HGS-designated Repair Supplier \*Authorized repairer : HGS-authorized Repair Supplier

Authorized Repairer

(Granted to the best supplier that has been servicing for more than 1 year)

**KOL Engineering** 16, 65 Beon-gil, Haeyang-ro, Yeongdo-gu, Busan, Korea. Jae-Sung, Choi, President Phone: +82 51 413 8121 E-mail: eng@korol.co.kr:

**BAON Tech** Jungnim-dong, 1437, Garakdae-ro, Gangseo-gu, Busan, Korea. Sang-Yong, Pvo, President Phone: +82 70 7872 7706 F-mail: raon@raon-tech net

IM Technology Co., Ltd. 358-6, Yeocheon-dong, 12-2, Sanan-ro, Nam-gu, Ulsan, Korea. Kvung-Uk, Han, President Phone: +82 52 265 1975 E-mail: imt8589@imt2002.com

Yumvung Engineering Co., Ltd. 307, Yeompo-ro, Buk-ku, Ulsan, Korea Jong-Bae, Kim, President Phone: +82 52 210 9900

E-mail: vumvuna@vumvuna.co.kr



Authorized Repairer / Asia

### Korea

### Country Code: +82

### KOMECO

155-4, Bansong-ro, Gijang-eup, Gijang-gun, Busan, Korea. Byung-Chun, Kang, President Phone: +82 51 724 5070 E-mail: kos@komeco.net

### KD Engineering Co., Ltd.

217-1, automotive parts institute Center Buk-Gu, Ulsan, Korea Kyung-Dal, Kim, President Phone: +82 52 236 3837 E-mail: kdkim@kd-eng.kr

### FinCo Service

#401, Dongsong Plaza, 149, Gyedong-ro, Gimhae-si, Korea. Yung-Uk, Jeong, President Phone: +82 55 312 3769 E-mail: finco@finco.kr

### Kormarine

26, 74 beon-gil, Hwajeonsandan 5-ro, Gangseo-gu, Busan, Korea. Hyung-Gyu, Lee, President Phone: +82 51 312 4585 **E-mail:** ship@kormarine-k.com

### **EM Solution**

767 Ungnam-ro, Seongsan-gu, Changwon-si, Korea. Sam-Su, Kang, President Phone: +82 55 211 9600 E-mail: ems2016@yesems.co.kr

### China

### Goltens Shanghai Co., Ltd.

Block No.5, No.533 Yuanzhong Road, Nanhui Industrial Zone, Nanhui District, Shanghai 201300, China Phone: +86 21 5818 6628 E-mail: china@goltens.com

### Singapore

Welmet Dongjin Eng.No.53 Gul Circle, Singapore 629584Jordan Lim, GMPhone: +65 6897 8511

Mobile: +65 9827 6787 E-mail: service01@welmet.com.sg

Authorized Repairer / Asia

Country Code: +86

Country Code: +45

Country Code: +886

Country Code: +63

### Goltens Singapore Pte Ltd. No.6A Benoi Road, Singapore 629881

Tom Boyle, MD Phone: +65 6 861 5220 Mobile: +65 9 732 1506 E-mail: singapore@goltens.com

### Taiwan

Jing Ming Engineering Enterprises Co., Ltd. 43, Lane 9,Shin Sheng Road, Chien Chen Dist., Kaohsiung 806, Taiwan Yung-Sen Pao, President Phone: +886 7 815 4256 E-mail: jm7976@ms14.hinet.net

### Philippines

# Fil Sung Tech. 18A UNIT 2B ELISCO ROAD, IBAYO-TIPAS, TAGUIG CITY 1637 Ik-Hyo Jeon, President Phone: +63 2 584 5156 E-mail: filsung@gmail.com

Authorized Repairer / Middle East, Europe

### UAE (Dubai)

Country Code: +971

 Goltens Co., Ltd Dubai Branch

 Plot # 6& 7 Dubai Maritime City, Dubai UAE P.O Box 2811

 Phone: +971 4 437 6555
 E-mail: dubai@goltens.com

### Nico international U.A.E.

Al Quoz Industrial Area, P.O. Box - 12068 Dubai, U.A.E Phone: +971 4309 0100 E-mail: nicouae@nicouae.com

### Netherlands

Country Code: +31

 Goltens Rotterdam B.V.

 Lorentzweg 29, 3208 LT Spijkenisse, The Netherlands

 Maarten Jeronimus, MD

 Phone: +31 181 465 100

 E-mail: rotterdam@goltens.com

Dardania Diesel Support B.V. Keizerlaan 38, 3233 VT Oostvoorne, The Netherlands Avni Lajqi Phone: +31 181 622 377 E-mail: info@rugovadiesel.eu

### Wetering Rotterdam

Bunschotenweg 134, 3089 KC Rotterdam, The Netherlands Mr. J.van Woerkom Phone: +31 10 4943 940 E-mail: repair@weteringrotterdam.com

### USA

Kormarine Services LLC

312 W. Summerfield Cir. Anaheim, California, 92802, USA Phone: +1 562 206 2835 E-mail: admin@kormarines.com

### Motor Service Hugo Stamp

 3190 SW 4th Ave - Fort Lauderdale, FL 33315, USA

 Phone: +1 954 763 3660
 E-mail: service@mshs.com

### Country Code: +505

Country Code: +593

 Servicios de Ingenieria Electrica Hanumul S.A.

 Reparto Bolonia Canal 2 de TV 25 varas al oeste, Managua, Nicaragua.

 Jin Kook, Kim (Juan Kim)
 Mobile: +505 948 3189

 Phone: +505 2266-0640
 E-mail: juankimnica@gmail.com

### Ecuador

Nicaragua

HBS Ecuador Los Rios 600 y, Quisquis Guayaquil, Ecuador Phone: +593 9 9344 1246 E-mail: ibc2005@hotmail.com Engine & Machinery Divisior



Country Code: +1

Cooperative Repairer / Asia

### China

LOGSHIP Limited

### Country Code: +86

Room 721A, Jingting Building, No. 1000 of Hongquan Road, Shanghai, China Keun Oh, Park Phone: +86 21 5223 5838 E-mail: lance@logship.co.kr

### **SINO Marine**

Buld5#, No.601 huicheng road, pudong district, shanghai, china Phone: +86 21 50350158 E-mail: starpower@sinomarine.cn

### HI-DA Marine service Co., Ltd.

Room 205 Training & Sports Centre, Yantian, Terminal, Shenzhen, China Sara Yu Phone: +86 755 2235 7080 E-mail: hdmrs@hi-da.com

### Winkong Marine Engineering Co., Ltd Floor 17, Zhongxin Building, No. 263. Liaoning Road, Qinadao. China

Phone: +86 532 8380 0536 E-mail: biz@winkong.net

### Oceanlink Marine Engineering Co., Ltd.

Suite 801, New world plaza, No.9, Fuzhou south road, 266071, Qingdao, China. Phone: +86 532 8309 6836 E-mail: technical@oceanlinkmarine.com

### Kormarine Services Limited Room 1403, Wanchai, Commercial Centre 194-204, Johnston Road, Wanchai, Hongkong Phone: +86 852 2679 0628 E-mail: ioon.an@kormarines.com

### Dalian Yonghang Marine Equipment Co., Ltd

Roo. 302, Building C-5, Chun tian yuan, Ganjingzi District, Dalian, China. Phone: +86 411 8653 8266 E-mail: business@yhmarine.net

### Taiwan

### Fu. Ko International Enterprises Co., Ltd.

No. 34 Lane 5 XinSheng Rd. Qianzhen Dist. Kaohsiung R.O.C. Taiwan Phone: +886 7 815 3133 E-mail: fuko.tsai@msa.hinet.net

### Singapore

### Country Code: +45

Country Code: +971-4

Country Code: +886

Cooperative Repairer / Asia, Europe

Jopca Marine Services Pte. Ltd. No.10 Tractor road #M2-m3 Jurong Town, 627971, Singapore Phone: +65 6264 4367 E-mail: inbox@jopca.com

### UAE

J.O.Engineering FZC P.O. BOX 2237, Fujairah, UAE(W/H no.106A, Fujairah Free Zone base-2) Phone: +971 4 882 9334 E-mail: jwlee@jo-eng.com

### Alexmar

Emirates Tower, Sheikh Zayed Rd, Dubai, 31303, UAE Phone: +971 1 431 32875 E-mail: alexmar@alexmar.com



Cooperative Repairer / Asia, Europe

### Turkey

### Country Code: +90

GANI Gemi ve Is Makinalari Tic, Ltd, Sti

Gumussuyu Mh. Kutlu Sk. No;8 34437 Taksim, Istanbul, Turkey Phone: +90 212 293 44 77 E-mail: umit@gani.com.tr

### MAKTEK

EVLİYA CELEBİ MAHALLESİ, FEDAİ SOKAK, NO:9 **ICMELER/TUZLA/ ISTANBUL/TURKEY** Phone: +90 216 446 9912 F-mail: info@maktekltd.com

### Italy

### Country Code: +39

**TEKNOSHIP** Via Rockfeller, 43-09126 Cagliari, Italy Phone: +39 0185 738121 E-mail: info@teknoship.it

Jobson Italia Srl Via delle Pianazze 150/A. La Spezia. Italv Phone: +39 018 798 4201 E-mail: a.bardi@iobsonitalia.net

### O.N.I. (Officine Navali Italiane S.p.A)

Immacolatella Nuova - Inner Porto, 80133 Napoli, Italv. Phone: +39 081 553 5927 E-mail: filippo.fenelli@oni.it

### Russia

### Country Code: +7

### NG-Energo

Legal Address: block 2, Volkhonskoe Highway 4, Villosi Township, Lomonosovsky District, Leningrad Region, Russian Federation, 188508 Office Address: liter A. 271, pr. Obukhovskov oborony, Saint-Petersburg, Russia, Phone: +7 812 334 0560 E-mail: info@ngenergo.ru

### Germany

#### Turbo-Technik Reparatur-Werft GmbH & Co. Hannoversche Strabe 11 D-26384 Wilhelmshaven Germany Phone: +49 442 130 780 E-mail: info@turbotechnik.com

### Netherlands

KLC-Marine Lorentzweg 33F, 3208LJ, Spiikenisse, The Netherlands Phone: +31 181 650 040

E-mail: klclee@amail.com

### Spain

#### MECANIZACION INDUSTRIAL ASTILLERO S.A. Polígono Industrial de Guarnizo, Parcela 18, 39611, Guarnizo, Cantabria, Spain Phone: +34 942 558 600 F-mail: mindasa@mindasa.es

### Estonia

I TH BAAS 5. Tuukri str. 10120. Tallinn. Estonia Phone: +372 52996303 F-mail: info@lth-baas.com

Country Code: +370

Cooperative Repairer / Europe

Country Code: +49

Country Code: +31

Country Code: +34

Country Code: +372

### Lithuania Garant Service UAB

Dubysos 27a, Klaipeda, Lithuania Phone: +370 46 341 941

E-mail: office@garant.lt

**Global Service Network** 

ថ្ង

Cooperative Repairer / America

### Cooperative Repairer / America, South America, Africa, Oceania, Indonesia

### USA

### Country Code: +1

Goltens Miami 2323 Ne Miamy Court Miami Florida 33137 USA Phone: +1 305 576 4410 E-mail: miami@goltens.com

### **Resource Power Group**

901 West 13th Street, Deer Park, Texas, USA E-mail: dan.kabel@rpgmarine.com Phone: +1 281 241 1252

### Canada

Country Code: +1

### Mount Royal/Walsh Inc.

2101 Aird Avenue, Montreal, Quebec H1V2W3, Canada Phone: +1 514 255 3301 E-mail: mrw@mrw-group.com

### Brazil

### Metalock Brasil Ltda.

Rua Visconde do Rio Branco 20/26, Santos SP. Brazil Phone: +55 13 3226 4686 E-mail: santos@metalock.com.br

### Vestergaard Marine Service do Brasil

Rua Araquaia 29. - Boa Vista - Sao Goncalo, RJ, 24466-230. Brazil Phone: +55 21 36292207 E-mail: kkl@vms.dk

### Diesel Line Cambui Ltda

odovia Amaral Peixoto, 1426 KM 160 Lote 25 - Condomínio Comercial Mar do Norte Rio das Ostras RJ, 28898-000, Brasil Phone: +55 22 3321 8000 F-mail: luiz dlc@dlcdiesel.com.br

### Dominican

#### ESD C/Mario Garcia Alvarado, #63, Edifloio ESD, Ensanche Quisqueva, 10145, Santo Domingo, Rep. Dom Phone: +1 809 533 6650 E-mail: sangmchoi@gmail.com

### Indonesia

### Country Code: +62

Country Code: +1

Country Code: +55

Goltens Jakarta

Danau Sunter Barat Blok A1 No.1, 14350, Sunter Agung, Jakarta Phone: +62 21 640 8091 E-mail: bayu.sukamto@goltens.com



Authorized Spare Parts Sales Agent

### Korea

Country Code: +82

DINTEC CO.,Ltd. DINTEC Bidg., 309, Jungang-daero, Dong-gu, Busan, Korea Gvu Sik Kim, President E-mail: service@dintec.co.kr Phone: +82 51 664 1000

### Ocean Marine Services Co..Ltd.

309. Jangsaengpogorae-ro, Nam- gu, Ulsan, Korea Jona Moon Kim. President Phone: +82 52 226 0700 F-mail: ocean@oceanma.com

### DAE HWA Engineering Service Co.,Ltd.

14, Dotjil-ro 384 bean-gil, Nam-gu, Ulsan, Korea Chul Jin Yoon, President E-mail: contact@daehwaeng.com Phone: +82 52 258 6230

### Jinsan Marine Management Co.,Ltd.

305, Jangsaengpogorae-ro, Nam-gu, Ulsan, Korea Suk Gu Kang, President E-mail: iinsan@iinsankorea.co.kr Phone: +82 52 228 7800

### J.O Engineering & Machinery Co., Ltd.

416, Dotjil-ro, Samsan-dong, Nam-gu, Ulsan, Korea Jong Ok Lee. President E-mail: sales@io-eng.com Phone: +82 52 257 9940

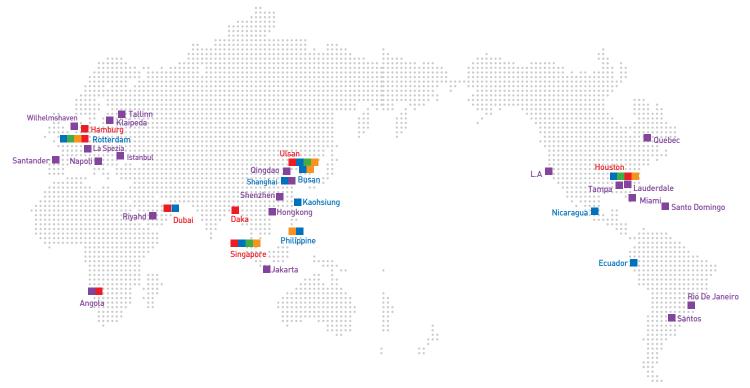
### Hyundai Corporation.

25, Yulgok-ro 2-gil, Jongno-gu, Seoul, Korea E-mail: spare@hyundaicorp.com Phone: +82 2 390 1114

### Singapore

### Singapore Shipping Enterprises Pte Ltd 112 Robinson Road #04-01, 068902, Singapore Alexandros Tsianos, Managing Director E-mail: operations@sse.sg Phone: +65 6336 4300

### USA


**NSCA Engine Services** 523 Garden Oaks Blvd Houston, TX 77018, USA David W Kim, President Phone: +1 713 380 9023

Country Code: +1

Country Code: +65

Authorized Spare Parts Sales Agent

E-mail: david.kim@nscaengine.com



Engine & Machinery Division



Authorized Repairer

### Cooperative Repairer

- Spare Parts Depot
- Parts Sales Agent

### HYUNDAI GLOBAL SERVICE

Centum Science Park 6F 79, Centum jungang-ro, Haeundae-gu, Busan, Korea (Zip code : 48058)

### WARRANTY SERVICE P

Tel: +82-52-204-7887/7742 E-Mail: service@hyundai-gs.com

### E PARTS SALES Tel: +82-52-204-7718/7742

E-Mail: sales@hyundai-gs.com

HYUNDAI

HIMSEN.

### CALL CENTER +82-70-8670-1122



MEMO

ENGANEE88M&AADIH#HERKA3MGON





MEMO

ENGANEE88M&AADIH#HERKA3MGON



